You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

114 lines
4.2 KiB

4 years ago
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
from paddle.regularizer import L2Decay
from paddle import ParamAttr
from ..layers import AnchorGeneratorSSD
@register
class FaceHead(nn.Layer):
"""
Head block for Face detection network
Args:
num_classes (int): Number of output classes.
in_channels (int): Number of input channels.
anchor_generator(object): instance of anchor genertor method.
kernel_size (int): kernel size of Conv2D in FaceHead.
padding (int): padding of Conv2D in FaceHead.
conv_decay (float): norm_decay (float): weight decay for conv layer weights.
loss (object): loss of face detection model.
"""
__shared__ = ['num_classes']
__inject__ = ['anchor_generator', 'loss']
def __init__(self,
num_classes=80,
in_channels=(96, 96),
anchor_generator=AnchorGeneratorSSD().__dict__,
kernel_size=3,
padding=1,
conv_decay=0.,
loss='SSDLoss'):
super(FaceHead, self).__init__()
# add background class
self.num_classes = num_classes + 1
self.in_channels = in_channels
self.anchor_generator = anchor_generator
self.loss = loss
if isinstance(anchor_generator, dict):
self.anchor_generator = AnchorGeneratorSSD(**anchor_generator)
self.num_priors = self.anchor_generator.num_priors
self.box_convs = []
self.score_convs = []
for i, num_prior in enumerate(self.num_priors):
box_conv_name = "boxes{}".format(i)
box_conv = self.add_sublayer(
box_conv_name,
nn.Conv2D(
in_channels=in_channels[i],
out_channels=num_prior * 4,
kernel_size=kernel_size,
padding=padding))
self.box_convs.append(box_conv)
score_conv_name = "scores{}".format(i)
score_conv = self.add_sublayer(
score_conv_name,
nn.Conv2D(
in_channels=in_channels[i],
out_channels=num_prior * self.num_classes,
kernel_size=kernel_size,
padding=padding))
self.score_convs.append(score_conv)
@classmethod
def from_config(cls, cfg, input_shape):
return {'in_channels': [i.channels for i in input_shape], }
def forward(self, feats, image, gt_bbox=None, gt_class=None):
box_preds = []
cls_scores = []
prior_boxes = []
for feat, box_conv, score_conv in zip(feats, self.box_convs,
self.score_convs):
box_pred = box_conv(feat)
box_pred = paddle.transpose(box_pred, [0, 2, 3, 1])
box_pred = paddle.reshape(box_pred, [0, -1, 4])
box_preds.append(box_pred)
cls_score = score_conv(feat)
cls_score = paddle.transpose(cls_score, [0, 2, 3, 1])
cls_score = paddle.reshape(cls_score, [0, -1, self.num_classes])
cls_scores.append(cls_score)
prior_boxes = self.anchor_generator(feats, image)
if self.training:
return self.get_loss(box_preds, cls_scores, gt_bbox, gt_class,
prior_boxes)
else:
return (box_preds, cls_scores), prior_boxes
def get_loss(self, boxes, scores, gt_bbox, gt_class, prior_boxes):
return self.loss(boxes, scores, gt_bbox, gt_class, prior_boxes)