227 lines
8.8 KiB
Python
227 lines
8.8 KiB
Python
![]() |
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
import numpy as np
|
||
|
import paddle
|
||
|
import paddle.nn as nn
|
||
|
import paddle.nn.functional as F
|
||
|
from ppdet.core.workspace import register
|
||
|
from ppdet.modeling import ops
|
||
|
|
||
|
INF = 1e8
|
||
|
__all__ = ['FCOSLoss']
|
||
|
|
||
|
|
||
|
def flatten_tensor(inputs, channel_first=False):
|
||
|
"""
|
||
|
Flatten a Tensor
|
||
|
Args:
|
||
|
inputs (Tensor): 4-D Tensor with shape [N, C, H, W] or [N, H, W, C]
|
||
|
channel_first(bool): if true the dimension order of
|
||
|
Tensor is [N, C, H, W], otherwise is [N, H, W, C]
|
||
|
Return:
|
||
|
input_channel_last (Tensor): The flattened Tensor in channel_last style
|
||
|
"""
|
||
|
if channel_first:
|
||
|
input_channel_last = paddle.transpose(inputs, perm=[0, 2, 3, 1])
|
||
|
else:
|
||
|
input_channel_last = inputs
|
||
|
output_channel_last = paddle.flatten(
|
||
|
input_channel_last, start_axis=0, stop_axis=2) # [N*H*W, C]
|
||
|
return output_channel_last
|
||
|
|
||
|
|
||
|
@register
|
||
|
class FCOSLoss(nn.Layer):
|
||
|
"""
|
||
|
FCOSLoss
|
||
|
Args:
|
||
|
loss_alpha (float): alpha in focal loss
|
||
|
loss_gamma (float): gamma in focal loss
|
||
|
iou_loss_type(str): location loss type, IoU/GIoU/LINEAR_IoU
|
||
|
reg_weights(float): weight for location loss
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
loss_alpha=0.25,
|
||
|
loss_gamma=2.0,
|
||
|
iou_loss_type="giou",
|
||
|
reg_weights=1.0):
|
||
|
super(FCOSLoss, self).__init__()
|
||
|
self.loss_alpha = loss_alpha
|
||
|
self.loss_gamma = loss_gamma
|
||
|
self.iou_loss_type = iou_loss_type
|
||
|
self.reg_weights = reg_weights
|
||
|
|
||
|
def __iou_loss(self, pred, targets, positive_mask, weights=None):
|
||
|
"""
|
||
|
Calculate the loss for location prediction
|
||
|
Args:
|
||
|
pred (Tensor): bounding boxes prediction
|
||
|
targets (Tensor): targets for positive samples
|
||
|
positive_mask (Tensor): mask of positive samples
|
||
|
weights (Tensor): weights for each positive samples
|
||
|
Return:
|
||
|
loss (Tensor): location loss
|
||
|
"""
|
||
|
plw = pred[:, 0] * positive_mask
|
||
|
pth = pred[:, 1] * positive_mask
|
||
|
prw = pred[:, 2] * positive_mask
|
||
|
pbh = pred[:, 3] * positive_mask
|
||
|
|
||
|
tlw = targets[:, 0] * positive_mask
|
||
|
tth = targets[:, 1] * positive_mask
|
||
|
trw = targets[:, 2] * positive_mask
|
||
|
tbh = targets[:, 3] * positive_mask
|
||
|
tlw.stop_gradient = True
|
||
|
trw.stop_gradient = True
|
||
|
tth.stop_gradient = True
|
||
|
tbh.stop_gradient = True
|
||
|
|
||
|
ilw = paddle.minimum(plw, tlw)
|
||
|
irw = paddle.minimum(prw, trw)
|
||
|
ith = paddle.minimum(pth, tth)
|
||
|
ibh = paddle.minimum(pbh, tbh)
|
||
|
|
||
|
clw = paddle.maximum(plw, tlw)
|
||
|
crw = paddle.maximum(prw, trw)
|
||
|
cth = paddle.maximum(pth, tth)
|
||
|
cbh = paddle.maximum(pbh, tbh)
|
||
|
|
||
|
area_predict = (plw + prw) * (pth + pbh)
|
||
|
area_target = (tlw + trw) * (tth + tbh)
|
||
|
area_inter = (ilw + irw) * (ith + ibh)
|
||
|
ious = (area_inter + 1.0) / (
|
||
|
area_predict + area_target - area_inter + 1.0)
|
||
|
ious = ious * positive_mask
|
||
|
|
||
|
if self.iou_loss_type.lower() == "linear_iou":
|
||
|
loss = 1.0 - ious
|
||
|
elif self.iou_loss_type.lower() == "giou":
|
||
|
area_uniou = area_predict + area_target - area_inter
|
||
|
area_circum = (clw + crw) * (cth + cbh) + 1e-7
|
||
|
giou = ious - (area_circum - area_uniou) / area_circum
|
||
|
loss = 1.0 - giou
|
||
|
elif self.iou_loss_type.lower() == "iou":
|
||
|
loss = 0.0 - paddle.log(ious)
|
||
|
else:
|
||
|
raise KeyError
|
||
|
if weights is not None:
|
||
|
loss = loss * weights
|
||
|
return loss
|
||
|
|
||
|
def forward(self, cls_logits, bboxes_reg, centerness, tag_labels,
|
||
|
tag_bboxes, tag_center):
|
||
|
"""
|
||
|
Calculate the loss for classification, location and centerness
|
||
|
Args:
|
||
|
cls_logits (list): list of Tensor, which is predicted
|
||
|
score for all anchor points with shape [N, M, C]
|
||
|
bboxes_reg (list): list of Tensor, which is predicted
|
||
|
offsets for all anchor points with shape [N, M, 4]
|
||
|
centerness (list): list of Tensor, which is predicted
|
||
|
centerness for all anchor points with shape [N, M, 1]
|
||
|
tag_labels (list): list of Tensor, which is category
|
||
|
targets for each anchor point
|
||
|
tag_bboxes (list): list of Tensor, which is bounding
|
||
|
boxes targets for positive samples
|
||
|
tag_center (list): list of Tensor, which is centerness
|
||
|
targets for positive samples
|
||
|
Return:
|
||
|
loss (dict): loss composed by classification loss, bounding box
|
||
|
"""
|
||
|
cls_logits_flatten_list = []
|
||
|
bboxes_reg_flatten_list = []
|
||
|
centerness_flatten_list = []
|
||
|
tag_labels_flatten_list = []
|
||
|
tag_bboxes_flatten_list = []
|
||
|
tag_center_flatten_list = []
|
||
|
num_lvl = len(cls_logits)
|
||
|
for lvl in range(num_lvl):
|
||
|
cls_logits_flatten_list.append(
|
||
|
flatten_tensor(cls_logits[lvl], True))
|
||
|
bboxes_reg_flatten_list.append(
|
||
|
flatten_tensor(bboxes_reg[lvl], True))
|
||
|
centerness_flatten_list.append(
|
||
|
flatten_tensor(centerness[lvl], True))
|
||
|
|
||
|
tag_labels_flatten_list.append(
|
||
|
flatten_tensor(tag_labels[lvl], False))
|
||
|
tag_bboxes_flatten_list.append(
|
||
|
flatten_tensor(tag_bboxes[lvl], False))
|
||
|
tag_center_flatten_list.append(
|
||
|
flatten_tensor(tag_center[lvl], False))
|
||
|
|
||
|
cls_logits_flatten = paddle.concat(cls_logits_flatten_list, axis=0)
|
||
|
bboxes_reg_flatten = paddle.concat(bboxes_reg_flatten_list, axis=0)
|
||
|
centerness_flatten = paddle.concat(centerness_flatten_list, axis=0)
|
||
|
|
||
|
tag_labels_flatten = paddle.concat(tag_labels_flatten_list, axis=0)
|
||
|
tag_bboxes_flatten = paddle.concat(tag_bboxes_flatten_list, axis=0)
|
||
|
tag_center_flatten = paddle.concat(tag_center_flatten_list, axis=0)
|
||
|
tag_labels_flatten.stop_gradient = True
|
||
|
tag_bboxes_flatten.stop_gradient = True
|
||
|
tag_center_flatten.stop_gradient = True
|
||
|
|
||
|
mask_positive_bool = tag_labels_flatten > 0
|
||
|
mask_positive_bool.stop_gradient = True
|
||
|
mask_positive_float = paddle.cast(mask_positive_bool, dtype="float32")
|
||
|
mask_positive_float.stop_gradient = True
|
||
|
|
||
|
num_positive_fp32 = paddle.sum(mask_positive_float)
|
||
|
num_positive_fp32.stop_gradient = True
|
||
|
num_positive_int32 = paddle.cast(num_positive_fp32, dtype="int32")
|
||
|
num_positive_int32 = num_positive_int32 * 0 + 1
|
||
|
num_positive_int32.stop_gradient = True
|
||
|
|
||
|
normalize_sum = paddle.sum(tag_center_flatten * mask_positive_float)
|
||
|
normalize_sum.stop_gradient = True
|
||
|
|
||
|
# 1. cls_logits: sigmoid_focal_loss
|
||
|
# expand onehot labels
|
||
|
num_classes = cls_logits_flatten.shape[-1]
|
||
|
tag_labels_flatten = paddle.squeeze(tag_labels_flatten, axis=-1)
|
||
|
tag_labels_flatten_bin = F.one_hot(
|
||
|
tag_labels_flatten, num_classes=1 + num_classes)
|
||
|
tag_labels_flatten_bin = tag_labels_flatten_bin[:, 1:]
|
||
|
# sigmoid_focal_loss
|
||
|
cls_loss = F.sigmoid_focal_loss(
|
||
|
cls_logits_flatten, tag_labels_flatten_bin) / num_positive_fp32
|
||
|
|
||
|
# 2. bboxes_reg: giou_loss
|
||
|
mask_positive_float = paddle.squeeze(mask_positive_float, axis=-1)
|
||
|
tag_center_flatten = paddle.squeeze(tag_center_flatten, axis=-1)
|
||
|
reg_loss = self.__iou_loss(
|
||
|
bboxes_reg_flatten,
|
||
|
tag_bboxes_flatten,
|
||
|
mask_positive_float,
|
||
|
weights=tag_center_flatten)
|
||
|
reg_loss = reg_loss * mask_positive_float / normalize_sum
|
||
|
|
||
|
# 3. centerness: sigmoid_cross_entropy_with_logits_loss
|
||
|
centerness_flatten = paddle.squeeze(centerness_flatten, axis=-1)
|
||
|
ctn_loss = ops.sigmoid_cross_entropy_with_logits(centerness_flatten,
|
||
|
tag_center_flatten)
|
||
|
ctn_loss = ctn_loss * mask_positive_float / num_positive_fp32
|
||
|
|
||
|
loss_all = {
|
||
|
"loss_centerness": paddle.sum(ctn_loss),
|
||
|
"loss_cls": paddle.sum(cls_loss),
|
||
|
"loss_box": paddle.sum(reg_loss)
|
||
|
}
|
||
|
return loss_all
|