You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
450 lines
16 KiB
450 lines
16 KiB
4 years ago
|
#!/usr/bin/env python
|
||
|
# coding: utf-8
|
||
|
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import argparse
|
||
|
import glob
|
||
|
import json
|
||
|
import os
|
||
|
import os.path as osp
|
||
|
import sys
|
||
|
import shutil
|
||
|
import xml.etree.ElementTree as ET
|
||
|
from tqdm import tqdm
|
||
|
import re
|
||
|
|
||
|
import numpy as np
|
||
|
import PIL.ImageDraw
|
||
|
|
||
|
label_to_num = {}
|
||
|
categories_list = []
|
||
|
labels_list = []
|
||
|
|
||
|
|
||
|
class MyEncoder(json.JSONEncoder):
|
||
|
def default(self, obj):
|
||
|
if isinstance(obj, np.integer):
|
||
|
return int(obj)
|
||
|
elif isinstance(obj, np.floating):
|
||
|
return float(obj)
|
||
|
elif isinstance(obj, np.ndarray):
|
||
|
return obj.tolist()
|
||
|
else:
|
||
|
return super(MyEncoder, self).default(obj)
|
||
|
|
||
|
|
||
|
def images_labelme(data, num):
|
||
|
image = {}
|
||
|
image['height'] = data['imageHeight']
|
||
|
image['width'] = data['imageWidth']
|
||
|
image['id'] = num + 1
|
||
|
if '\\' in data['imagePath']:
|
||
|
image['file_name'] = data['imagePath'].split('\\')[-1]
|
||
|
else:
|
||
|
image['file_name'] = data['imagePath'].split('/')[-1]
|
||
|
return image
|
||
|
|
||
|
|
||
|
def images_cityscape(data, num, img_file):
|
||
|
image = {}
|
||
|
image['height'] = data['imgHeight']
|
||
|
image['width'] = data['imgWidth']
|
||
|
image['id'] = num + 1
|
||
|
image['file_name'] = img_file
|
||
|
return image
|
||
|
|
||
|
|
||
|
def categories(label, labels_list):
|
||
|
category = {}
|
||
|
category['supercategory'] = 'component'
|
||
|
category['id'] = len(labels_list) + 1
|
||
|
category['name'] = label
|
||
|
return category
|
||
|
|
||
|
|
||
|
def annotations_rectangle(points, label, image_num, object_num, label_to_num):
|
||
|
annotation = {}
|
||
|
seg_points = np.asarray(points).copy()
|
||
|
seg_points[1, :] = np.asarray(points)[2, :]
|
||
|
seg_points[2, :] = np.asarray(points)[1, :]
|
||
|
annotation['segmentation'] = [list(seg_points.flatten())]
|
||
|
annotation['iscrowd'] = 0
|
||
|
annotation['image_id'] = image_num + 1
|
||
|
annotation['bbox'] = list(
|
||
|
map(float, [
|
||
|
points[0][0], points[0][1], points[1][0] - points[0][0], points[1][
|
||
|
1] - points[0][1]
|
||
|
]))
|
||
|
annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]
|
||
|
annotation['category_id'] = label_to_num[label]
|
||
|
annotation['id'] = object_num + 1
|
||
|
return annotation
|
||
|
|
||
|
|
||
|
def annotations_polygon(height, width, points, label, image_num, object_num,
|
||
|
label_to_num):
|
||
|
annotation = {}
|
||
|
annotation['segmentation'] = [list(np.asarray(points).flatten())]
|
||
|
annotation['iscrowd'] = 0
|
||
|
annotation['image_id'] = image_num + 1
|
||
|
annotation['bbox'] = list(map(float, get_bbox(height, width, points)))
|
||
|
annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]
|
||
|
annotation['category_id'] = label_to_num[label]
|
||
|
annotation['id'] = object_num + 1
|
||
|
return annotation
|
||
|
|
||
|
|
||
|
def get_bbox(height, width, points):
|
||
|
polygons = points
|
||
|
mask = np.zeros([height, width], dtype=np.uint8)
|
||
|
mask = PIL.Image.fromarray(mask)
|
||
|
xy = list(map(tuple, polygons))
|
||
|
PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
|
||
|
mask = np.array(mask, dtype=bool)
|
||
|
index = np.argwhere(mask == 1)
|
||
|
rows = index[:, 0]
|
||
|
clos = index[:, 1]
|
||
|
left_top_r = np.min(rows)
|
||
|
left_top_c = np.min(clos)
|
||
|
right_bottom_r = np.max(rows)
|
||
|
right_bottom_c = np.max(clos)
|
||
|
return [
|
||
|
left_top_c, left_top_r, right_bottom_c - left_top_c,
|
||
|
right_bottom_r - left_top_r
|
||
|
]
|
||
|
|
||
|
|
||
|
def deal_json(ds_type, img_path, json_path):
|
||
|
data_coco = {}
|
||
|
images_list = []
|
||
|
annotations_list = []
|
||
|
image_num = -1
|
||
|
object_num = -1
|
||
|
for img_file in os.listdir(img_path):
|
||
|
img_label = os.path.splitext(img_file)[0]
|
||
|
if img_file.split('.')[
|
||
|
-1] not in ['bmp', 'jpg', 'jpeg', 'png', 'JPEG', 'JPG', 'PNG']:
|
||
|
continue
|
||
|
label_file = osp.join(json_path, img_label + '.json')
|
||
|
print('Generating dataset from:', label_file)
|
||
|
image_num = image_num + 1
|
||
|
with open(label_file) as f:
|
||
|
data = json.load(f)
|
||
|
if ds_type == 'labelme':
|
||
|
images_list.append(images_labelme(data, image_num))
|
||
|
elif ds_type == 'cityscape':
|
||
|
images_list.append(images_cityscape(data, image_num, img_file))
|
||
|
if ds_type == 'labelme':
|
||
|
for shapes in data['shapes']:
|
||
|
object_num = object_num + 1
|
||
|
label = shapes['label']
|
||
|
if label not in labels_list:
|
||
|
categories_list.append(categories(label, labels_list))
|
||
|
labels_list.append(label)
|
||
|
label_to_num[label] = len(labels_list)
|
||
|
p_type = shapes['shape_type']
|
||
|
if p_type == 'polygon':
|
||
|
points = shapes['points']
|
||
|
annotations_list.append(
|
||
|
annotations_polygon(data['imageHeight'], data[
|
||
|
'imageWidth'], points, label, image_num,
|
||
|
object_num, label_to_num))
|
||
|
|
||
|
if p_type == 'rectangle':
|
||
|
(x1, y1), (x2, y2) = shapes['points']
|
||
|
x1, x2 = sorted([x1, x2])
|
||
|
y1, y2 = sorted([y1, y2])
|
||
|
points = [[x1, y1], [x2, y2], [x1, y2], [x2, y1]]
|
||
|
annotations_list.append(
|
||
|
annotations_rectangle(points, label, image_num,
|
||
|
object_num, label_to_num))
|
||
|
elif ds_type == 'cityscape':
|
||
|
for shapes in data['objects']:
|
||
|
object_num = object_num + 1
|
||
|
label = shapes['label']
|
||
|
if label not in labels_list:
|
||
|
categories_list.append(categories(label, labels_list))
|
||
|
labels_list.append(label)
|
||
|
label_to_num[label] = len(labels_list)
|
||
|
points = shapes['polygon']
|
||
|
annotations_list.append(
|
||
|
annotations_polygon(data['imgHeight'], data[
|
||
|
'imgWidth'], points, label, image_num, object_num,
|
||
|
label_to_num))
|
||
|
data_coco['images'] = images_list
|
||
|
data_coco['categories'] = categories_list
|
||
|
data_coco['annotations'] = annotations_list
|
||
|
return data_coco
|
||
|
|
||
|
|
||
|
def voc_get_label_anno(ann_dir_path, ann_ids_path, labels_path):
|
||
|
with open(labels_path, 'r') as f:
|
||
|
labels_str = f.read().split()
|
||
|
labels_ids = list(range(1, len(labels_str) + 1))
|
||
|
|
||
|
with open(ann_ids_path, 'r') as f:
|
||
|
ann_ids = f.read().split()
|
||
|
ann_paths = []
|
||
|
for aid in ann_ids:
|
||
|
if aid.endswith('xml'):
|
||
|
ann_path = os.path.join(ann_dir_path, aid)
|
||
|
else:
|
||
|
ann_path = os.path.join(ann_dir_path, aid + '.xml')
|
||
|
ann_paths.append(ann_path)
|
||
|
|
||
|
return dict(zip(labels_str, labels_ids)), ann_paths
|
||
|
|
||
|
|
||
|
def voc_get_image_info(annotation_root, im_id):
|
||
|
filename = annotation_root.findtext('filename')
|
||
|
assert filename is not None
|
||
|
img_name = os.path.basename(filename)
|
||
|
|
||
|
size = annotation_root.find('size')
|
||
|
width = float(size.findtext('width'))
|
||
|
height = float(size.findtext('height'))
|
||
|
|
||
|
image_info = {
|
||
|
'file_name': filename,
|
||
|
'height': height,
|
||
|
'width': width,
|
||
|
'id': im_id
|
||
|
}
|
||
|
return image_info
|
||
|
|
||
|
|
||
|
def voc_get_coco_annotation(obj, label2id):
|
||
|
label = obj.findtext('name')
|
||
|
assert label in label2id, "label is not in label2id."
|
||
|
category_id = label2id[label]
|
||
|
bndbox = obj.find('bndbox')
|
||
|
xmin = float(bndbox.findtext('xmin'))
|
||
|
ymin = float(bndbox.findtext('ymin'))
|
||
|
xmax = float(bndbox.findtext('xmax'))
|
||
|
ymax = float(bndbox.findtext('ymax'))
|
||
|
assert xmax > xmin and ymax > ymin, "Box size error."
|
||
|
o_width = xmax - xmin
|
||
|
o_height = ymax - ymin
|
||
|
anno = {
|
||
|
'area': o_width * o_height,
|
||
|
'iscrowd': 0,
|
||
|
'bbox': [xmin, ymin, o_width, o_height],
|
||
|
'category_id': category_id,
|
||
|
'ignore': 0,
|
||
|
}
|
||
|
return anno
|
||
|
|
||
|
|
||
|
def voc_xmls_to_cocojson(annotation_paths, label2id, output_dir, output_file):
|
||
|
output_json_dict = {
|
||
|
"images": [],
|
||
|
"type": "instances",
|
||
|
"annotations": [],
|
||
|
"categories": []
|
||
|
}
|
||
|
bnd_id = 1 # bounding box start id
|
||
|
im_id = 0
|
||
|
print('Start converting !')
|
||
|
for a_path in tqdm(annotation_paths):
|
||
|
# Read annotation xml
|
||
|
ann_tree = ET.parse(a_path)
|
||
|
ann_root = ann_tree.getroot()
|
||
|
|
||
|
img_info = voc_get_image_info(ann_root, im_id)
|
||
|
output_json_dict['images'].append(img_info)
|
||
|
|
||
|
for obj in ann_root.findall('object'):
|
||
|
ann = voc_get_coco_annotation(obj=obj, label2id=label2id)
|
||
|
ann.update({'image_id': im_id, 'id': bnd_id})
|
||
|
output_json_dict['annotations'].append(ann)
|
||
|
bnd_id = bnd_id + 1
|
||
|
im_id += 1
|
||
|
|
||
|
for label, label_id in label2id.items():
|
||
|
category_info = {'supercategory': 'none', 'id': label_id, 'name': label}
|
||
|
output_json_dict['categories'].append(category_info)
|
||
|
output_file = os.path.join(output_dir, output_file)
|
||
|
with open(output_file, 'w') as f:
|
||
|
output_json = json.dumps(output_json_dict)
|
||
|
f.write(output_json)
|
||
|
|
||
|
|
||
|
def main():
|
||
|
parser = argparse.ArgumentParser(
|
||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||
|
parser.add_argument(
|
||
|
'--dataset_type',
|
||
|
help='the type of dataset, can be `voc`, `labelme` or `cityscape`')
|
||
|
parser.add_argument('--json_input_dir', help='input annotated directory')
|
||
|
parser.add_argument('--image_input_dir', help='image directory')
|
||
|
parser.add_argument(
|
||
|
'--output_dir', help='output dataset directory', default='./')
|
||
|
parser.add_argument(
|
||
|
'--train_proportion',
|
||
|
help='the proportion of train dataset',
|
||
|
type=float,
|
||
|
default=1.0)
|
||
|
parser.add_argument(
|
||
|
'--val_proportion',
|
||
|
help='the proportion of validation dataset',
|
||
|
type=float,
|
||
|
default=0.0)
|
||
|
parser.add_argument(
|
||
|
'--test_proportion',
|
||
|
help='the proportion of test dataset',
|
||
|
type=float,
|
||
|
default=0.0)
|
||
|
parser.add_argument(
|
||
|
'--voc_anno_dir',
|
||
|
help='In Voc format dataset, path to annotation files directory.',
|
||
|
type=str,
|
||
|
default=None)
|
||
|
parser.add_argument(
|
||
|
'--voc_anno_list',
|
||
|
help='In Voc format dataset, path to annotation files ids list.',
|
||
|
type=str,
|
||
|
default=None)
|
||
|
parser.add_argument(
|
||
|
'--voc_label_list',
|
||
|
help='In Voc format dataset, path to label list. The content of each line is a category.',
|
||
|
type=str,
|
||
|
default=None)
|
||
|
parser.add_argument(
|
||
|
'--voc_out_name',
|
||
|
type=str,
|
||
|
default='voc.json',
|
||
|
help='In Voc format dataset, path to output json file')
|
||
|
args = parser.parse_args()
|
||
|
try:
|
||
|
assert args.dataset_type in ['voc', 'labelme', 'cityscape']
|
||
|
except AssertionError as e:
|
||
|
print(
|
||
|
'Now only support the voc, cityscape dataset and labelme dataset!!')
|
||
|
os._exit(0)
|
||
|
|
||
|
if args.dataset_type == 'voc':
|
||
|
assert args.voc_anno_dir and args.voc_anno_list and args.voc_label_list
|
||
|
label2id, ann_paths = voc_get_label_anno(
|
||
|
args.voc_anno_dir, args.voc_anno_list, args.voc_label_list)
|
||
|
voc_xmls_to_cocojson(
|
||
|
annotation_paths=ann_paths,
|
||
|
label2id=label2id,
|
||
|
output_dir=args.output_dir,
|
||
|
output_file=args.voc_out_name)
|
||
|
else:
|
||
|
try:
|
||
|
assert os.path.exists(args.json_input_dir)
|
||
|
except AssertionError as e:
|
||
|
print('The json folder does not exist!')
|
||
|
os._exit(0)
|
||
|
try:
|
||
|
assert os.path.exists(args.image_input_dir)
|
||
|
except AssertionError as e:
|
||
|
print('The image folder does not exist!')
|
||
|
os._exit(0)
|
||
|
try:
|
||
|
assert abs(args.train_proportion + args.val_proportion \
|
||
|
+ args.test_proportion - 1.0) < 1e-5
|
||
|
except AssertionError as e:
|
||
|
print(
|
||
|
'The sum of pqoportion of training, validation and test datase must be 1!'
|
||
|
)
|
||
|
os._exit(0)
|
||
|
|
||
|
# Allocate the dataset.
|
||
|
total_num = len(glob.glob(osp.join(args.json_input_dir, '*.json')))
|
||
|
if args.train_proportion != 0:
|
||
|
train_num = int(total_num * args.train_proportion)
|
||
|
out_dir = args.output_dir + '/train'
|
||
|
if not os.path.exists(out_dir):
|
||
|
os.makedirs(out_dir)
|
||
|
else:
|
||
|
train_num = 0
|
||
|
if args.val_proportion == 0.0:
|
||
|
val_num = 0
|
||
|
test_num = total_num - train_num
|
||
|
out_dir = args.output_dir + '/test'
|
||
|
if args.test_proportion != 0.0 and not os.path.exists(out_dir):
|
||
|
os.makedirs(out_dir)
|
||
|
else:
|
||
|
val_num = int(total_num * args.val_proportion)
|
||
|
test_num = total_num - train_num - val_num
|
||
|
val_out_dir = args.output_dir + '/val'
|
||
|
if not os.path.exists(val_out_dir):
|
||
|
os.makedirs(val_out_dir)
|
||
|
test_out_dir = args.output_dir + '/test'
|
||
|
if args.test_proportion != 0.0 and not os.path.exists(test_out_dir):
|
||
|
os.makedirs(test_out_dir)
|
||
|
count = 1
|
||
|
for img_name in os.listdir(args.image_input_dir):
|
||
|
if count <= train_num:
|
||
|
if osp.exists(args.output_dir + '/train/'):
|
||
|
shutil.copyfile(
|
||
|
osp.join(args.image_input_dir, img_name),
|
||
|
osp.join(args.output_dir + '/train/', img_name))
|
||
|
else:
|
||
|
if count <= train_num + val_num:
|
||
|
if osp.exists(args.output_dir + '/val/'):
|
||
|
shutil.copyfile(
|
||
|
osp.join(args.image_input_dir, img_name),
|
||
|
osp.join(args.output_dir + '/val/', img_name))
|
||
|
else:
|
||
|
if osp.exists(args.output_dir + '/test/'):
|
||
|
shutil.copyfile(
|
||
|
osp.join(args.image_input_dir, img_name),
|
||
|
osp.join(args.output_dir + '/test/', img_name))
|
||
|
count = count + 1
|
||
|
|
||
|
# Deal with the json files.
|
||
|
if not os.path.exists(args.output_dir + '/annotations'):
|
||
|
os.makedirs(args.output_dir + '/annotations')
|
||
|
if args.train_proportion != 0:
|
||
|
train_data_coco = deal_json(args.dataset_type,
|
||
|
args.output_dir + '/train',
|
||
|
args.json_input_dir)
|
||
|
train_json_path = osp.join(args.output_dir + '/annotations',
|
||
|
'instance_train.json')
|
||
|
json.dump(
|
||
|
train_data_coco,
|
||
|
open(train_json_path, 'w'),
|
||
|
indent=4,
|
||
|
cls=MyEncoder)
|
||
|
if args.val_proportion != 0:
|
||
|
val_data_coco = deal_json(args.dataset_type,
|
||
|
args.output_dir + '/val',
|
||
|
args.json_input_dir)
|
||
|
val_json_path = osp.join(args.output_dir + '/annotations',
|
||
|
'instance_val.json')
|
||
|
json.dump(
|
||
|
val_data_coco,
|
||
|
open(val_json_path, 'w'),
|
||
|
indent=4,
|
||
|
cls=MyEncoder)
|
||
|
if args.test_proportion != 0:
|
||
|
test_data_coco = deal_json(args.dataset_type,
|
||
|
args.output_dir + '/test',
|
||
|
args.json_input_dir)
|
||
|
test_json_path = osp.join(args.output_dir + '/annotations',
|
||
|
'instance_test.json')
|
||
|
json.dump(
|
||
|
test_data_coco,
|
||
|
open(test_json_path, 'w'),
|
||
|
indent=4,
|
||
|
cls=MyEncoder)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main()
|