You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

529 lines
16 KiB

4 years ago
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
import paddle.nn.functional as F
import math
import numpy as np
def bbox2delta(src_boxes, tgt_boxes, weights):
src_w = src_boxes[:, 2] - src_boxes[:, 0]
src_h = src_boxes[:, 3] - src_boxes[:, 1]
src_ctr_x = src_boxes[:, 0] + 0.5 * src_w
src_ctr_y = src_boxes[:, 1] + 0.5 * src_h
tgt_w = tgt_boxes[:, 2] - tgt_boxes[:, 0]
tgt_h = tgt_boxes[:, 3] - tgt_boxes[:, 1]
tgt_ctr_x = tgt_boxes[:, 0] + 0.5 * tgt_w
tgt_ctr_y = tgt_boxes[:, 1] + 0.5 * tgt_h
wx, wy, ww, wh = weights
dx = wx * (tgt_ctr_x - src_ctr_x) / src_w
dy = wy * (tgt_ctr_y - src_ctr_y) / src_h
dw = ww * paddle.log(tgt_w / src_w)
dh = wh * paddle.log(tgt_h / src_h)
deltas = paddle.stack((dx, dy, dw, dh), axis=1)
return deltas
def delta2bbox(deltas, boxes, weights):
clip_scale = math.log(1000.0 / 16)
widths = boxes[:, 2] - boxes[:, 0]
heights = boxes[:, 3] - boxes[:, 1]
ctr_x = boxes[:, 0] + 0.5 * widths
ctr_y = boxes[:, 1] + 0.5 * heights
wx, wy, ww, wh = weights
dx = deltas[:, 0::4] / wx
dy = deltas[:, 1::4] / wy
dw = deltas[:, 2::4] / ww
dh = deltas[:, 3::4] / wh
# Prevent sending too large values into paddle.exp()
dw = paddle.clip(dw, max=clip_scale)
dh = paddle.clip(dh, max=clip_scale)
pred_ctr_x = dx * widths.unsqueeze(1) + ctr_x.unsqueeze(1)
pred_ctr_y = dy * heights.unsqueeze(1) + ctr_y.unsqueeze(1)
pred_w = paddle.exp(dw) * widths.unsqueeze(1)
pred_h = paddle.exp(dh) * heights.unsqueeze(1)
pred_boxes = []
pred_boxes.append(pred_ctr_x - 0.5 * pred_w)
pred_boxes.append(pred_ctr_y - 0.5 * pred_h)
pred_boxes.append(pred_ctr_x + 0.5 * pred_w)
pred_boxes.append(pred_ctr_y + 0.5 * pred_h)
pred_boxes = paddle.stack(pred_boxes, axis=-1)
return pred_boxes
def expand_bbox(bboxes, scale):
w_half = (bboxes[:, 2] - bboxes[:, 0]) * .5
h_half = (bboxes[:, 3] - bboxes[:, 1]) * .5
x_c = (bboxes[:, 2] + bboxes[:, 0]) * .5
y_c = (bboxes[:, 3] + bboxes[:, 1]) * .5
w_half *= scale
h_half *= scale
bboxes_exp = np.zeros(bboxes.shape, dtype=np.float32)
bboxes_exp[:, 0] = x_c - w_half
bboxes_exp[:, 2] = x_c + w_half
bboxes_exp[:, 1] = y_c - h_half
bboxes_exp[:, 3] = y_c + h_half
return bboxes_exp
def clip_bbox(boxes, im_shape):
h, w = im_shape[0], im_shape[1]
x1 = boxes[:, 0].clip(0, w)
y1 = boxes[:, 1].clip(0, h)
x2 = boxes[:, 2].clip(0, w)
y2 = boxes[:, 3].clip(0, h)
return paddle.stack([x1, y1, x2, y2], axis=1)
def nonempty_bbox(boxes, min_size=0, return_mask=False):
w = boxes[:, 2] - boxes[:, 0]
h = boxes[:, 3] - boxes[:, 1]
mask = paddle.logical_and(w > min_size, w > min_size)
if return_mask:
return mask
keep = paddle.nonzero(mask).flatten()
return keep
def bbox_area(boxes):
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
def bbox_overlaps(boxes1, boxes2):
"""
Calculate overlaps between boxes1 and boxes2
Args:
boxes1 (Tensor): boxes with shape [M, 4]
boxes2 (Tensor): boxes with shape [N, 4]
Return:
overlaps (Tensor): overlaps between boxes1 and boxes2 with shape [M, N]
"""
area1 = bbox_area(boxes1)
area2 = bbox_area(boxes2)
xy_max = paddle.minimum(
paddle.unsqueeze(boxes1, 1)[:, :, 2:], boxes2[:, 2:])
xy_min = paddle.maximum(
paddle.unsqueeze(boxes1, 1)[:, :, :2], boxes2[:, :2])
width_height = xy_max - xy_min
width_height = width_height.clip(min=0)
inter = width_height.prod(axis=2)
overlaps = paddle.where(inter > 0, inter /
(paddle.unsqueeze(area1, 1) + area2 - inter),
paddle.zeros_like(inter))
return overlaps
def xywh2xyxy(box):
x, y, w, h = box
x1 = x - w * 0.5
y1 = y - h * 0.5
x2 = x + w * 0.5
y2 = y + h * 0.5
return [x1, y1, x2, y2]
def make_grid(h, w, dtype):
yv, xv = paddle.meshgrid([paddle.arange(h), paddle.arange(w)])
return paddle.stack((xv, yv), 2).cast(dtype=dtype)
def decode_yolo(box, anchor, downsample_ratio):
"""decode yolo box
Args:
box (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
anchor (list): anchor with the shape [na, 2]
downsample_ratio (int): downsample ratio, default 32
scale (float): scale, default 1.
Return:
box (list): decoded box, [x, y, w, h], all have the shape [b, na, h, w, 1]
"""
x, y, w, h = box
na, grid_h, grid_w = x.shape[1:4]
grid = make_grid(grid_h, grid_w, x.dtype).reshape((1, 1, grid_h, grid_w, 2))
x1 = (x + grid[:, :, :, :, 0:1]) / grid_w
y1 = (y + grid[:, :, :, :, 1:2]) / grid_h
anchor = paddle.to_tensor(anchor)
anchor = paddle.cast(anchor, x.dtype)
anchor = anchor.reshape((1, na, 1, 1, 2))
w1 = paddle.exp(w) * anchor[:, :, :, :, 0:1] / (downsample_ratio * grid_w)
h1 = paddle.exp(h) * anchor[:, :, :, :, 1:2] / (downsample_ratio * grid_h)
return [x1, y1, w1, h1]
def iou_similarity(box1, box2, eps=1e-9):
"""Calculate iou of box1 and box2
Args:
box1 (Tensor): box with the shape [N, M1, 4]
box2 (Tensor): box with the shape [N, M2, 4]
Return:
iou (Tensor): iou between box1 and box2 with the shape [N, M1, M2]
"""
box1 = box1.unsqueeze(2) # [N, M1, 4] -> [N, M1, 1, 4]
box2 = box2.unsqueeze(1) # [N, M2, 4] -> [N, 1, M2, 4]
px1y1, px2y2 = box1[:, :, :, 0:2], box1[:, :, :, 2:4]
gx1y1, gx2y2 = box2[:, :, :, 0:2], box2[:, :, :, 2:4]
x1y1 = paddle.maximum(px1y1, gx1y1)
x2y2 = paddle.minimum(px2y2, gx2y2)
overlap = (x2y2 - x1y1).clip(0).prod(-1)
area1 = (px2y2 - px1y1).clip(0).prod(-1)
area2 = (gx2y2 - gx1y1).clip(0).prod(-1)
union = area1 + area2 - overlap + eps
return overlap / union
def bbox_iou(box1, box2, giou=False, diou=False, ciou=False, eps=1e-9):
"""calculate the iou of box1 and box2
Args:
box1 (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
box2 (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
giou (bool): whether use giou or not, default False
diou (bool): whether use diou or not, default False
ciou (bool): whether use ciou or not, default False
eps (float): epsilon to avoid divide by zero
Return:
iou (Tensor): iou of box1 and box1, with the shape [b, na, h, w, 1]
"""
px1, py1, px2, py2 = box1
gx1, gy1, gx2, gy2 = box2
x1 = paddle.maximum(px1, gx1)
y1 = paddle.maximum(py1, gy1)
x2 = paddle.minimum(px2, gx2)
y2 = paddle.minimum(py2, gy2)
overlap = ((x2 - x1).clip(0)) * ((y2 - y1).clip(0))
area1 = (px2 - px1) * (py2 - py1)
area1 = area1.clip(0)
area2 = (gx2 - gx1) * (gy2 - gy1)
area2 = area2.clip(0)
union = area1 + area2 - overlap + eps
iou = overlap / union
if giou or ciou or diou:
# convex w, h
cw = paddle.maximum(px2, gx2) - paddle.minimum(px1, gx1)
ch = paddle.maximum(py2, gy2) - paddle.minimum(py1, gy1)
if giou:
c_area = cw * ch + eps
return iou - (c_area - union) / c_area
else:
# convex diagonal squared
c2 = cw**2 + ch**2 + eps
# center distance
rho2 = ((px1 + px2 - gx1 - gx2)**2 + (py1 + py2 - gy1 - gy2)**2) / 4
if diou:
return iou - rho2 / c2
else:
w1, h1 = px2 - px1, py2 - py1 + eps
w2, h2 = gx2 - gx1, gy2 - gy1 + eps
delta = paddle.atan(w1 / h1) - paddle.atan(w2 / h2)
v = (4 / math.pi**2) * paddle.pow(delta, 2)
alpha = v / (1 + eps - iou + v)
alpha.stop_gradient = True
return iou - (rho2 / c2 + v * alpha)
else:
return iou
def rect2rbox(bboxes):
"""
:param bboxes: shape (n, 4) (xmin, ymin, xmax, ymax)
:return: dbboxes: shape (n, 5) (x_ctr, y_ctr, w, h, angle)
"""
bboxes = bboxes.reshape(-1, 4)
num_boxes = bboxes.shape[0]
x_ctr = (bboxes[:, 2] + bboxes[:, 0]) / 2.0
y_ctr = (bboxes[:, 3] + bboxes[:, 1]) / 2.0
edges1 = np.abs(bboxes[:, 2] - bboxes[:, 0])
edges2 = np.abs(bboxes[:, 3] - bboxes[:, 1])
angles = np.zeros([num_boxes], dtype=bboxes.dtype)
inds = edges1 < edges2
rboxes = np.stack((x_ctr, y_ctr, edges1, edges2, angles), axis=1)
rboxes[inds, 2] = edges2[inds]
rboxes[inds, 3] = edges1[inds]
rboxes[inds, 4] = np.pi / 2.0
return rboxes
def delta2rbox(Rrois,
deltas,
means=[0, 0, 0, 0, 0],
stds=[1, 1, 1, 1, 1],
wh_ratio_clip=1e-6):
"""
:param Rrois: (cx, cy, w, h, theta)
:param deltas: (dx, dy, dw, dh, dtheta)
:param means:
:param stds:
:param wh_ratio_clip:
:return:
"""
means = paddle.to_tensor(means)
stds = paddle.to_tensor(stds)
deltas = paddle.reshape(deltas, [-1, deltas.shape[-1]])
denorm_deltas = deltas * stds + means
dx = denorm_deltas[:, 0]
dy = denorm_deltas[:, 1]
dw = denorm_deltas[:, 2]
dh = denorm_deltas[:, 3]
dangle = denorm_deltas[:, 4]
max_ratio = np.abs(np.log(wh_ratio_clip))
dw = paddle.clip(dw, min=-max_ratio, max=max_ratio)
dh = paddle.clip(dh, min=-max_ratio, max=max_ratio)
Rroi_x = Rrois[:, 0]
Rroi_y = Rrois[:, 1]
Rroi_w = Rrois[:, 2]
Rroi_h = Rrois[:, 3]
Rroi_angle = Rrois[:, 4]
gx = dx * Rroi_w * paddle.cos(Rroi_angle) - dy * Rroi_h * paddle.sin(
Rroi_angle) + Rroi_x
gy = dx * Rroi_w * paddle.sin(Rroi_angle) + dy * Rroi_h * paddle.cos(
Rroi_angle) + Rroi_y
gw = Rroi_w * dw.exp()
gh = Rroi_h * dh.exp()
ga = np.pi * dangle + Rroi_angle
ga = (ga + np.pi / 4) % np.pi - np.pi / 4
ga = paddle.to_tensor(ga)
gw = paddle.to_tensor(gw, dtype='float32')
gh = paddle.to_tensor(gh, dtype='float32')
bboxes = paddle.stack([gx, gy, gw, gh, ga], axis=-1)
return bboxes
def rbox2delta(proposals, gt, means=[0, 0, 0, 0, 0], stds=[1, 1, 1, 1, 1]):
"""
Args:
proposals:
gt:
means: 1x5
stds: 1x5
Returns:
"""
proposals = proposals.astype(np.float64)
PI = np.pi
gt_widths = gt[..., 2]
gt_heights = gt[..., 3]
gt_angle = gt[..., 4]
proposals_widths = proposals[..., 2]
proposals_heights = proposals[..., 3]
proposals_angle = proposals[..., 4]
coord = gt[..., 0:2] - proposals[..., 0:2]
dx = (np.cos(proposals[..., 4]) * coord[..., 0] + np.sin(proposals[..., 4])
* coord[..., 1]) / proposals_widths
dy = (-np.sin(proposals[..., 4]) * coord[..., 0] + np.cos(proposals[..., 4])
* coord[..., 1]) / proposals_heights
dw = np.log(gt_widths / proposals_widths)
dh = np.log(gt_heights / proposals_heights)
da = (gt_angle - proposals_angle)
da = (da + PI / 4) % PI - PI / 4
da /= PI
deltas = np.stack([dx, dy, dw, dh, da], axis=-1)
means = np.array(means, dtype=deltas.dtype)
stds = np.array(stds, dtype=deltas.dtype)
deltas = (deltas - means) / stds
deltas = deltas.astype(np.float32)
return deltas
def bbox_decode(bbox_preds,
anchors,
means=[0, 0, 0, 0, 0],
stds=[1, 1, 1, 1, 1]):
"""decode bbox from deltas
Args:
bbox_preds: [N,H,W,5]
anchors: [H*W,5]
return:
bboxes: [N,H,W,5]
"""
means = paddle.to_tensor(means)
stds = paddle.to_tensor(stds)
num_imgs, H, W, _ = bbox_preds.shape
bboxes_list = []
for img_id in range(num_imgs):
bbox_pred = bbox_preds[img_id]
# bbox_pred.shape=[5,H,W]
bbox_delta = bbox_pred
anchors = paddle.to_tensor(anchors)
bboxes = delta2rbox(
anchors, bbox_delta, means, stds, wh_ratio_clip=1e-6)
bboxes = paddle.reshape(bboxes, [H, W, 5])
bboxes_list.append(bboxes)
return paddle.stack(bboxes_list, axis=0)
def poly_to_rbox(polys):
"""
poly:[x0,y0,x1,y1,x2,y2,x3,y3]
to
rotated_boxes:[x_ctr,y_ctr,w,h,angle]
"""
rotated_boxes = []
for poly in polys:
poly = np.array(poly[:8], dtype=np.float32)
pt1 = (poly[0], poly[1])
pt2 = (poly[2], poly[3])
pt3 = (poly[4], poly[5])
pt4 = (poly[6], poly[7])
edge1 = np.sqrt((pt1[0] - pt2[0]) * (pt1[0] - pt2[0]) + (pt1[1] - pt2[
1]) * (pt1[1] - pt2[1]))
edge2 = np.sqrt((pt2[0] - pt3[0]) * (pt2[0] - pt3[0]) + (pt2[1] - pt3[
1]) * (pt2[1] - pt3[1]))
width = max(edge1, edge2)
height = min(edge1, edge2)
rbox_angle = 0
if edge1 > edge2:
rbox_angle = np.arctan2(
np.float(pt2[1] - pt1[1]), np.float(pt2[0] - pt1[0]))
elif edge2 >= edge1:
rbox_angle = np.arctan2(
np.float(pt4[1] - pt1[1]), np.float(pt4[0] - pt1[0]))
def norm_angle(angle, range=[-np.pi / 4, np.pi]):
return (angle - range[0]) % range[1] + range[0]
rbox_angle = norm_angle(rbox_angle)
x_ctr = np.float(pt1[0] + pt3[0]) / 2
y_ctr = np.float(pt1[1] + pt3[1]) / 2
rotated_box = np.array([x_ctr, y_ctr, width, height, rbox_angle])
rotated_boxes.append(rotated_box)
ret_rotated_boxes = np.array(rotated_boxes)
assert ret_rotated_boxes.shape[1] == 5
return ret_rotated_boxes
def cal_line_length(point1, point2):
import math
return math.sqrt(
math.pow(point1[0] - point2[0], 2) + math.pow(point1[1] - point2[1], 2))
def get_best_begin_point_single(coordinate):
x1, y1, x2, y2, x3, y3, x4, y4 = coordinate
xmin = min(x1, x2, x3, x4)
ymin = min(y1, y2, y3, y4)
xmax = max(x1, x2, x3, x4)
ymax = max(y1, y2, y3, y4)
combinate = [[[x1, y1], [x2, y2], [x3, y3], [x4, y4]],
[[x4, y4], [x1, y1], [x2, y2], [x3, y3]],
[[x3, y3], [x4, y4], [x1, y1], [x2, y2]],
[[x2, y2], [x3, y3], [x4, y4], [x1, y1]]]
dst_coordinate = [[xmin, ymin], [xmax, ymin], [xmax, ymax], [xmin, ymax]]
force = 100000000.0
force_flag = 0
for i in range(4):
temp_force = cal_line_length(combinate[i][0], dst_coordinate[0]) \
+ cal_line_length(combinate[i][1], dst_coordinate[1]) \
+ cal_line_length(combinate[i][2], dst_coordinate[2]) \
+ cal_line_length(combinate[i][3], dst_coordinate[3])
if temp_force < force:
force = temp_force
force_flag = i
if force_flag != 0:
pass
return np.array(combinate[force_flag]).reshape(8)
def rbox2poly_single(rrect):
"""
rrect:[x_ctr,y_ctr,w,h,angle]
to
poly:[x0,y0,x1,y1,x2,y2,x3,y3]
"""
x_ctr, y_ctr, width, height, angle = rrect[:5]
tl_x, tl_y, br_x, br_y = -width / 2, -height / 2, width / 2, height / 2
# rect 2x4
rect = np.array([[tl_x, br_x, br_x, tl_x], [tl_y, tl_y, br_y, br_y]])
R = np.array([[np.cos(angle), -np.sin(angle)],
[np.sin(angle), np.cos(angle)]])
# poly
poly = R.dot(rect)
x0, x1, x2, x3 = poly[0, :4] + x_ctr
y0, y1, y2, y3 = poly[1, :4] + y_ctr
poly = np.array([x0, y0, x1, y1, x2, y2, x3, y3], dtype=np.float32)
poly = get_best_begin_point_single(poly)
return poly
def rbox2poly(rrects):
"""
rrect:[x_ctr,y_ctr,w,h,angle]
to
poly:[x0,y0,x1,y1,x2,y2,x3,y3]
"""
polys = []
for rrect in rrects:
x_ctr, y_ctr, width, height, angle = rrect[:5]
tl_x, tl_y, br_x, br_y = -width / 2, -height / 2, width / 2, height / 2
rect = np.array([[tl_x, br_x, br_x, tl_x], [tl_y, tl_y, br_y, br_y]])
R = np.array([[np.cos(angle), -np.sin(angle)],
[np.sin(angle), np.cos(angle)]])
poly = R.dot(rect)
x0, x1, x2, x3 = poly[0, :4] + x_ctr
y0, y1, y2, y3 = poly[1, :4] + y_ctr
poly = np.array([x0, y0, x1, y1, x2, y2, x3, y3], dtype=np.float32)
poly = get_best_begin_point_single(poly)
polys.append(poly)
polys = np.array(polys)
return polys