119 lines
3.5 KiB
C++
119 lines
3.5 KiB
C++
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
#include <memory>
|
|
#include <utility>
|
|
#include <ctime>
|
|
|
|
#include <opencv2/core/core.hpp>
|
|
#include <opencv2/imgproc/imgproc.hpp>
|
|
#include <opencv2/highgui/highgui.hpp>
|
|
|
|
#include "paddle_inference_api.h" // NOLINT
|
|
|
|
#include "include/preprocess_op.h"
|
|
#include "include/config_parser.h"
|
|
|
|
using namespace paddle_infer;
|
|
|
|
namespace PaddleDetection {
|
|
// Object Detection Result
|
|
struct ObjectResult {
|
|
// Rectangle coordinates of detected object: left, right, top, down
|
|
std::vector<int> rect;
|
|
// Class id of detected object
|
|
int class_id;
|
|
// Confidence of detected object
|
|
float confidence;
|
|
};
|
|
|
|
|
|
// Generate visualization colormap for each class
|
|
std::vector<int> GenerateColorMap(int num_class);
|
|
|
|
|
|
// Visualiztion Detection Result
|
|
cv::Mat VisualizeResult(const cv::Mat& img,
|
|
const std::vector<ObjectResult>& results,
|
|
const std::vector<std::string>& lable_list,
|
|
const std::vector<int>& colormap);
|
|
|
|
|
|
class ObjectDetector {
|
|
public:
|
|
explicit ObjectDetector(const std::string& model_dir,
|
|
bool use_gpu=false,
|
|
const std::string& run_mode="fluid",
|
|
const int gpu_id=0,
|
|
bool use_dynamic_shape=false,
|
|
const int trt_min_shape=1,
|
|
const int trt_max_shape=1280,
|
|
const int trt_opt_shape=640) {
|
|
config_.load_config(model_dir);
|
|
threshold_ = config_.draw_threshold_;
|
|
image_shape_ = config_.image_shape_;
|
|
preprocessor_.Init(config_.preprocess_info_, image_shape_);
|
|
LoadModel(model_dir, use_gpu, config_.min_subgraph_size_, 1, run_mode, gpu_id,
|
|
use_dynamic_shape, trt_min_shape, trt_max_shape, trt_opt_shape);
|
|
}
|
|
|
|
// Load Paddle inference model
|
|
void LoadModel(
|
|
const std::string& model_dir,
|
|
bool use_gpu,
|
|
const int min_subgraph_size,
|
|
const int batch_size = 1,
|
|
const std::string& run_mode = "fluid",
|
|
const int gpu_id=0,
|
|
bool use_dynamic_shape=false,
|
|
const int trt_min_shape=1,
|
|
const int trt_max_shape=1280,
|
|
const int trt_opt_shape=640);
|
|
|
|
// Run predictor
|
|
void Predict(const cv::Mat& im,
|
|
const double threshold = 0.5,
|
|
const int warmup = 0,
|
|
const int repeats = 1,
|
|
const bool run_benchmark = false,
|
|
std::vector<ObjectResult>* result = nullptr);
|
|
|
|
// Get Model Label list
|
|
const std::vector<std::string>& GetLabelList() const {
|
|
return config_.label_list_;
|
|
}
|
|
|
|
private:
|
|
// Preprocess image and copy data to input buffer
|
|
void Preprocess(const cv::Mat& image_mat);
|
|
// Postprocess result
|
|
void Postprocess(
|
|
const cv::Mat& raw_mat,
|
|
std::vector<ObjectResult>* result);
|
|
|
|
std::shared_ptr<Predictor> predictor_;
|
|
Preprocessor preprocessor_;
|
|
ImageBlob inputs_;
|
|
std::vector<float> output_data_;
|
|
float threshold_;
|
|
ConfigPaser config_;
|
|
std::vector<int> image_shape_;
|
|
};
|
|
|
|
} // namespace PaddleDetection
|