car-line-detect/deploy/cpp/include/object_detector.h
2021-06-23 08:58:10 +08:00

119 lines
3.5 KiB
C++

// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include <memory>
#include <utility>
#include <ctime>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include "paddle_inference_api.h" // NOLINT
#include "include/preprocess_op.h"
#include "include/config_parser.h"
using namespace paddle_infer;
namespace PaddleDetection {
// Object Detection Result
struct ObjectResult {
// Rectangle coordinates of detected object: left, right, top, down
std::vector<int> rect;
// Class id of detected object
int class_id;
// Confidence of detected object
float confidence;
};
// Generate visualization colormap for each class
std::vector<int> GenerateColorMap(int num_class);
// Visualiztion Detection Result
cv::Mat VisualizeResult(const cv::Mat& img,
const std::vector<ObjectResult>& results,
const std::vector<std::string>& lable_list,
const std::vector<int>& colormap);
class ObjectDetector {
public:
explicit ObjectDetector(const std::string& model_dir,
bool use_gpu=false,
const std::string& run_mode="fluid",
const int gpu_id=0,
bool use_dynamic_shape=false,
const int trt_min_shape=1,
const int trt_max_shape=1280,
const int trt_opt_shape=640) {
config_.load_config(model_dir);
threshold_ = config_.draw_threshold_;
image_shape_ = config_.image_shape_;
preprocessor_.Init(config_.preprocess_info_, image_shape_);
LoadModel(model_dir, use_gpu, config_.min_subgraph_size_, 1, run_mode, gpu_id,
use_dynamic_shape, trt_min_shape, trt_max_shape, trt_opt_shape);
}
// Load Paddle inference model
void LoadModel(
const std::string& model_dir,
bool use_gpu,
const int min_subgraph_size,
const int batch_size = 1,
const std::string& run_mode = "fluid",
const int gpu_id=0,
bool use_dynamic_shape=false,
const int trt_min_shape=1,
const int trt_max_shape=1280,
const int trt_opt_shape=640);
// Run predictor
void Predict(const cv::Mat& im,
const double threshold = 0.5,
const int warmup = 0,
const int repeats = 1,
const bool run_benchmark = false,
std::vector<ObjectResult>* result = nullptr);
// Get Model Label list
const std::vector<std::string>& GetLabelList() const {
return config_.label_list_;
}
private:
// Preprocess image and copy data to input buffer
void Preprocess(const cv::Mat& image_mat);
// Postprocess result
void Postprocess(
const cv::Mat& raw_mat,
std::vector<ObjectResult>* result);
std::shared_ptr<Predictor> predictor_;
Preprocessor preprocessor_;
ImageBlob inputs_;
std::vector<float> output_data_;
float threshold_;
ConfigPaser config_;
std::vector<int> image_shape_;
};
} // namespace PaddleDetection