You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
95 lines
3.2 KiB
95 lines
3.2 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import paddle
|
|
from ppdet.core.workspace import register, create
|
|
from .meta_arch import BaseArch
|
|
|
|
__all__ = ['FCOS']
|
|
|
|
|
|
@register
|
|
class FCOS(BaseArch):
|
|
__category__ = 'architecture'
|
|
__inject__ = ['fcos_post_process']
|
|
|
|
def __init__(self,
|
|
backbone,
|
|
neck,
|
|
fcos_head='FCOSHead',
|
|
fcos_post_process='FCOSPostProcess'):
|
|
super(FCOS, self).__init__()
|
|
self.backbone = backbone
|
|
self.neck = neck
|
|
self.fcos_head = fcos_head
|
|
self.fcos_post_process = fcos_post_process
|
|
|
|
@classmethod
|
|
def from_config(cls, cfg, *args, **kwargs):
|
|
backbone = create(cfg['backbone'])
|
|
|
|
kwargs = {'input_shape': backbone.out_shape}
|
|
neck = create(cfg['neck'], **kwargs)
|
|
|
|
kwargs = {'input_shape': neck.out_shape}
|
|
fcos_head = create(cfg['fcos_head'], **kwargs)
|
|
|
|
return {
|
|
'backbone': backbone,
|
|
'neck': neck,
|
|
"fcos_head": fcos_head,
|
|
}
|
|
|
|
def _forward(self):
|
|
body_feats = self.backbone(self.inputs)
|
|
fpn_feats = self.neck(body_feats)
|
|
fcos_head_outs = self.fcos_head(fpn_feats, self.training)
|
|
if not self.training:
|
|
scale_factor = self.inputs['scale_factor']
|
|
bboxes = self.fcos_post_process(fcos_head_outs, scale_factor)
|
|
return bboxes
|
|
else:
|
|
return fcos_head_outs
|
|
|
|
def get_loss(self, ):
|
|
loss = {}
|
|
tag_labels, tag_bboxes, tag_centerness = [], [], []
|
|
for i in range(len(self.fcos_head.fpn_stride)):
|
|
# reg_target, labels, scores, centerness
|
|
k_lbl = 'labels{}'.format(i)
|
|
if k_lbl in self.inputs:
|
|
tag_labels.append(self.inputs[k_lbl])
|
|
k_box = 'reg_target{}'.format(i)
|
|
if k_box in self.inputs:
|
|
tag_bboxes.append(self.inputs[k_box])
|
|
k_ctn = 'centerness{}'.format(i)
|
|
if k_ctn in self.inputs:
|
|
tag_centerness.append(self.inputs[k_ctn])
|
|
|
|
fcos_head_outs = self._forward()
|
|
loss_fcos = self.fcos_head.get_loss(fcos_head_outs, tag_labels,
|
|
tag_bboxes, tag_centerness)
|
|
loss.update(loss_fcos)
|
|
total_loss = paddle.add_n(list(loss.values()))
|
|
loss.update({'loss': total_loss})
|
|
return loss
|
|
|
|
def get_pred(self):
|
|
bboxes, bbox_num = self._forward()
|
|
output = {'bbox': bboxes, 'bbox_num': bbox_num}
|
|
return output
|
|
|