You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
723 lines
24 KiB
723 lines
24 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
from paddle.regularizer import L2Decay
|
|
from paddle import ParamAttr
|
|
from paddle.nn.initializer import Normal
|
|
from numbers import Integral
|
|
import math
|
|
|
|
from ppdet.core.workspace import register, serializable
|
|
from ..shape_spec import ShapeSpec
|
|
|
|
__all__ = ['HRNet']
|
|
|
|
|
|
class ConvNormLayer(nn.Layer):
|
|
def __init__(self,
|
|
ch_in,
|
|
ch_out,
|
|
filter_size,
|
|
stride=1,
|
|
norm_type='bn',
|
|
norm_groups=32,
|
|
use_dcn=False,
|
|
norm_decay=0.,
|
|
freeze_norm=False,
|
|
act=None,
|
|
name=None):
|
|
super(ConvNormLayer, self).__init__()
|
|
assert norm_type in ['bn', 'sync_bn', 'gn']
|
|
|
|
self.act = act
|
|
self.conv = nn.Conv2D(
|
|
in_channels=ch_in,
|
|
out_channels=ch_out,
|
|
kernel_size=filter_size,
|
|
stride=stride,
|
|
padding=(filter_size - 1) // 2,
|
|
groups=1,
|
|
weight_attr=ParamAttr(
|
|
name=name + "_weights", initializer=Normal(
|
|
mean=0., std=0.01)),
|
|
bias_attr=False)
|
|
|
|
norm_lr = 0. if freeze_norm else 1.
|
|
|
|
norm_name = name + '_bn'
|
|
param_attr = ParamAttr(
|
|
name=norm_name + "_scale",
|
|
learning_rate=norm_lr,
|
|
regularizer=L2Decay(norm_decay))
|
|
bias_attr = ParamAttr(
|
|
name=norm_name + "_offset",
|
|
learning_rate=norm_lr,
|
|
regularizer=L2Decay(norm_decay))
|
|
global_stats = True if freeze_norm else False
|
|
if norm_type in ['bn', 'sync_bn']:
|
|
self.norm = nn.BatchNorm(
|
|
ch_out,
|
|
param_attr=param_attr,
|
|
bias_attr=bias_attr,
|
|
use_global_stats=global_stats,
|
|
moving_mean_name=norm_name + '_mean',
|
|
moving_variance_name=norm_name + '_variance')
|
|
elif norm_type == 'gn':
|
|
self.norm = nn.GroupNorm(
|
|
num_groups=norm_groups,
|
|
num_channels=ch_out,
|
|
weight_attr=param_attr,
|
|
bias_attr=bias_attr)
|
|
norm_params = self.norm.parameters()
|
|
if freeze_norm:
|
|
for param in norm_params:
|
|
param.stop_gradient = True
|
|
|
|
def forward(self, inputs):
|
|
out = self.conv(inputs)
|
|
out = self.norm(out)
|
|
|
|
if self.act == 'relu':
|
|
out = F.relu(out)
|
|
return out
|
|
|
|
|
|
class Layer1(nn.Layer):
|
|
def __init__(self,
|
|
num_channels,
|
|
has_se=False,
|
|
norm_decay=0.,
|
|
freeze_norm=True,
|
|
name=None):
|
|
super(Layer1, self).__init__()
|
|
|
|
self.bottleneck_block_list = []
|
|
|
|
for i in range(4):
|
|
bottleneck_block = self.add_sublayer(
|
|
"block_{}_{}".format(name, i + 1),
|
|
BottleneckBlock(
|
|
num_channels=num_channels if i == 0 else 256,
|
|
num_filters=64,
|
|
has_se=has_se,
|
|
stride=1,
|
|
downsample=True if i == 0 else False,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
name=name + '_' + str(i + 1)))
|
|
self.bottleneck_block_list.append(bottleneck_block)
|
|
|
|
def forward(self, input):
|
|
conv = input
|
|
for block_func in self.bottleneck_block_list:
|
|
conv = block_func(conv)
|
|
return conv
|
|
|
|
|
|
class TransitionLayer(nn.Layer):
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
norm_decay=0.,
|
|
freeze_norm=True,
|
|
name=None):
|
|
super(TransitionLayer, self).__init__()
|
|
|
|
num_in = len(in_channels)
|
|
num_out = len(out_channels)
|
|
out = []
|
|
self.conv_bn_func_list = []
|
|
for i in range(num_out):
|
|
residual = None
|
|
if i < num_in:
|
|
if in_channels[i] != out_channels[i]:
|
|
residual = self.add_sublayer(
|
|
"transition_{}_layer_{}".format(name, i + 1),
|
|
ConvNormLayer(
|
|
ch_in=in_channels[i],
|
|
ch_out=out_channels[i],
|
|
filter_size=3,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
act='relu',
|
|
name=name + '_layer_' + str(i + 1)))
|
|
else:
|
|
residual = self.add_sublayer(
|
|
"transition_{}_layer_{}".format(name, i + 1),
|
|
ConvNormLayer(
|
|
ch_in=in_channels[-1],
|
|
ch_out=out_channels[i],
|
|
filter_size=3,
|
|
stride=2,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
act='relu',
|
|
name=name + '_layer_' + str(i + 1)))
|
|
self.conv_bn_func_list.append(residual)
|
|
|
|
def forward(self, input):
|
|
outs = []
|
|
for idx, conv_bn_func in enumerate(self.conv_bn_func_list):
|
|
if conv_bn_func is None:
|
|
outs.append(input[idx])
|
|
else:
|
|
if idx < len(input):
|
|
outs.append(conv_bn_func(input[idx]))
|
|
else:
|
|
outs.append(conv_bn_func(input[-1]))
|
|
return outs
|
|
|
|
|
|
class Branches(nn.Layer):
|
|
def __init__(self,
|
|
block_num,
|
|
in_channels,
|
|
out_channels,
|
|
has_se=False,
|
|
norm_decay=0.,
|
|
freeze_norm=True,
|
|
name=None):
|
|
super(Branches, self).__init__()
|
|
|
|
self.basic_block_list = []
|
|
for i in range(len(out_channels)):
|
|
self.basic_block_list.append([])
|
|
for j in range(block_num):
|
|
in_ch = in_channels[i] if j == 0 else out_channels[i]
|
|
basic_block_func = self.add_sublayer(
|
|
"bb_{}_branch_layer_{}_{}".format(name, i + 1, j + 1),
|
|
BasicBlock(
|
|
num_channels=in_ch,
|
|
num_filters=out_channels[i],
|
|
has_se=has_se,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
name=name + '_branch_layer_' + str(i + 1) + '_' +
|
|
str(j + 1)))
|
|
self.basic_block_list[i].append(basic_block_func)
|
|
|
|
def forward(self, inputs):
|
|
outs = []
|
|
for idx, input in enumerate(inputs):
|
|
conv = input
|
|
basic_block_list = self.basic_block_list[idx]
|
|
for basic_block_func in basic_block_list:
|
|
conv = basic_block_func(conv)
|
|
outs.append(conv)
|
|
return outs
|
|
|
|
|
|
class BottleneckBlock(nn.Layer):
|
|
def __init__(self,
|
|
num_channels,
|
|
num_filters,
|
|
has_se,
|
|
stride=1,
|
|
downsample=False,
|
|
norm_decay=0.,
|
|
freeze_norm=True,
|
|
name=None):
|
|
super(BottleneckBlock, self).__init__()
|
|
|
|
self.has_se = has_se
|
|
self.downsample = downsample
|
|
|
|
self.conv1 = ConvNormLayer(
|
|
ch_in=num_channels,
|
|
ch_out=num_filters,
|
|
filter_size=1,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
act="relu",
|
|
name=name + "_conv1")
|
|
self.conv2 = ConvNormLayer(
|
|
ch_in=num_filters,
|
|
ch_out=num_filters,
|
|
filter_size=3,
|
|
stride=stride,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
act="relu",
|
|
name=name + "_conv2")
|
|
self.conv3 = ConvNormLayer(
|
|
ch_in=num_filters,
|
|
ch_out=num_filters * 4,
|
|
filter_size=1,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
act=None,
|
|
name=name + "_conv3")
|
|
|
|
if self.downsample:
|
|
self.conv_down = ConvNormLayer(
|
|
ch_in=num_channels,
|
|
ch_out=num_filters * 4,
|
|
filter_size=1,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
act=None,
|
|
name=name + "_downsample")
|
|
|
|
if self.has_se:
|
|
self.se = SELayer(
|
|
num_channels=num_filters * 4,
|
|
num_filters=num_filters * 4,
|
|
reduction_ratio=16,
|
|
name='fc' + name)
|
|
|
|
def forward(self, input):
|
|
residual = input
|
|
conv1 = self.conv1(input)
|
|
conv2 = self.conv2(conv1)
|
|
conv3 = self.conv3(conv2)
|
|
|
|
if self.downsample:
|
|
residual = self.conv_down(input)
|
|
|
|
if self.has_se:
|
|
conv3 = self.se(conv3)
|
|
|
|
y = paddle.add(x=residual, y=conv3)
|
|
y = F.relu(y)
|
|
return y
|
|
|
|
|
|
class BasicBlock(nn.Layer):
|
|
def __init__(self,
|
|
num_channels,
|
|
num_filters,
|
|
stride=1,
|
|
has_se=False,
|
|
downsample=False,
|
|
norm_decay=0.,
|
|
freeze_norm=True,
|
|
name=None):
|
|
super(BasicBlock, self).__init__()
|
|
|
|
self.has_se = has_se
|
|
self.downsample = downsample
|
|
self.conv1 = ConvNormLayer(
|
|
ch_in=num_channels,
|
|
ch_out=num_filters,
|
|
filter_size=3,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
stride=stride,
|
|
act="relu",
|
|
name=name + "_conv1")
|
|
self.conv2 = ConvNormLayer(
|
|
ch_in=num_filters,
|
|
ch_out=num_filters,
|
|
filter_size=3,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
stride=1,
|
|
act=None,
|
|
name=name + "_conv2")
|
|
|
|
if self.downsample:
|
|
self.conv_down = ConvNormLayer(
|
|
ch_in=num_channels,
|
|
ch_out=num_filters * 4,
|
|
filter_size=1,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
act=None,
|
|
name=name + "_downsample")
|
|
|
|
if self.has_se:
|
|
self.se = SELayer(
|
|
num_channels=num_filters,
|
|
num_filters=num_filters,
|
|
reduction_ratio=16,
|
|
name='fc' + name)
|
|
|
|
def forward(self, input):
|
|
residual = input
|
|
conv1 = self.conv1(input)
|
|
conv2 = self.conv2(conv1)
|
|
|
|
if self.downsample:
|
|
residual = self.conv_down(input)
|
|
|
|
if self.has_se:
|
|
conv2 = self.se(conv2)
|
|
|
|
y = paddle.add(x=residual, y=conv2)
|
|
y = F.relu(y)
|
|
return y
|
|
|
|
|
|
class SELayer(nn.Layer):
|
|
def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
|
|
super(SELayer, self).__init__()
|
|
|
|
self.pool2d_gap = AdaptiveAvgPool2D(1)
|
|
|
|
self._num_channels = num_channels
|
|
|
|
med_ch = int(num_channels / reduction_ratio)
|
|
stdv = 1.0 / math.sqrt(num_channels * 1.0)
|
|
self.squeeze = Linear(
|
|
num_channels,
|
|
med_ch,
|
|
weight_attr=ParamAttr(
|
|
initializer=Uniform(-stdv, stdv), name=name + "_sqz_weights"),
|
|
bias_attr=ParamAttr(name=name + '_sqz_offset'))
|
|
|
|
stdv = 1.0 / math.sqrt(med_ch * 1.0)
|
|
self.excitation = Linear(
|
|
med_ch,
|
|
num_filters,
|
|
weight_attr=ParamAttr(
|
|
initializer=Uniform(-stdv, stdv), name=name + "_exc_weights"),
|
|
bias_attr=ParamAttr(name=name + '_exc_offset'))
|
|
|
|
def forward(self, input):
|
|
pool = self.pool2d_gap(input)
|
|
pool = paddle.squeeze(pool, axis=[2, 3])
|
|
squeeze = self.squeeze(pool)
|
|
squeeze = F.relu(squeeze)
|
|
excitation = self.excitation(squeeze)
|
|
excitation = F.sigmoid(excitation)
|
|
excitation = paddle.unsqueeze(excitation, axis=[2, 3])
|
|
out = input * excitation
|
|
return out
|
|
|
|
|
|
class Stage(nn.Layer):
|
|
def __init__(self,
|
|
num_channels,
|
|
num_modules,
|
|
num_filters,
|
|
has_se=False,
|
|
norm_decay=0.,
|
|
freeze_norm=True,
|
|
multi_scale_output=True,
|
|
name=None):
|
|
super(Stage, self).__init__()
|
|
|
|
self._num_modules = num_modules
|
|
self.stage_func_list = []
|
|
for i in range(num_modules):
|
|
if i == num_modules - 1 and not multi_scale_output:
|
|
stage_func = self.add_sublayer(
|
|
"stage_{}_{}".format(name, i + 1),
|
|
HighResolutionModule(
|
|
num_channels=num_channels,
|
|
num_filters=num_filters,
|
|
has_se=has_se,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
multi_scale_output=False,
|
|
name=name + '_' + str(i + 1)))
|
|
else:
|
|
stage_func = self.add_sublayer(
|
|
"stage_{}_{}".format(name, i + 1),
|
|
HighResolutionModule(
|
|
num_channels=num_channels,
|
|
num_filters=num_filters,
|
|
has_se=has_se,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
name=name + '_' + str(i + 1)))
|
|
|
|
self.stage_func_list.append(stage_func)
|
|
|
|
def forward(self, input):
|
|
out = input
|
|
for idx in range(self._num_modules):
|
|
out = self.stage_func_list[idx](out)
|
|
return out
|
|
|
|
|
|
class HighResolutionModule(nn.Layer):
|
|
def __init__(self,
|
|
num_channels,
|
|
num_filters,
|
|
has_se=False,
|
|
multi_scale_output=True,
|
|
norm_decay=0.,
|
|
freeze_norm=True,
|
|
name=None):
|
|
super(HighResolutionModule, self).__init__()
|
|
self.branches_func = Branches(
|
|
block_num=4,
|
|
in_channels=num_channels,
|
|
out_channels=num_filters,
|
|
has_se=has_se,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
name=name)
|
|
|
|
self.fuse_func = FuseLayers(
|
|
in_channels=num_filters,
|
|
out_channels=num_filters,
|
|
multi_scale_output=multi_scale_output,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
name=name)
|
|
|
|
def forward(self, input):
|
|
out = self.branches_func(input)
|
|
out = self.fuse_func(out)
|
|
return out
|
|
|
|
|
|
class FuseLayers(nn.Layer):
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
multi_scale_output=True,
|
|
norm_decay=0.,
|
|
freeze_norm=True,
|
|
name=None):
|
|
super(FuseLayers, self).__init__()
|
|
|
|
self._actual_ch = len(in_channels) if multi_scale_output else 1
|
|
self._in_channels = in_channels
|
|
|
|
self.residual_func_list = []
|
|
for i in range(self._actual_ch):
|
|
for j in range(len(in_channels)):
|
|
residual_func = None
|
|
if j > i:
|
|
residual_func = self.add_sublayer(
|
|
"residual_{}_layer_{}_{}".format(name, i + 1, j + 1),
|
|
ConvNormLayer(
|
|
ch_in=in_channels[j],
|
|
ch_out=out_channels[i],
|
|
filter_size=1,
|
|
stride=1,
|
|
act=None,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
name=name + '_layer_' + str(i + 1) + '_' +
|
|
str(j + 1)))
|
|
self.residual_func_list.append(residual_func)
|
|
elif j < i:
|
|
pre_num_filters = in_channels[j]
|
|
for k in range(i - j):
|
|
if k == i - j - 1:
|
|
residual_func = self.add_sublayer(
|
|
"residual_{}_layer_{}_{}_{}".format(
|
|
name, i + 1, j + 1, k + 1),
|
|
ConvNormLayer(
|
|
ch_in=pre_num_filters,
|
|
ch_out=out_channels[i],
|
|
filter_size=3,
|
|
stride=2,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
act=None,
|
|
name=name + '_layer_' + str(i + 1) + '_' +
|
|
str(j + 1) + '_' + str(k + 1)))
|
|
pre_num_filters = out_channels[i]
|
|
else:
|
|
residual_func = self.add_sublayer(
|
|
"residual_{}_layer_{}_{}_{}".format(
|
|
name, i + 1, j + 1, k + 1),
|
|
ConvNormLayer(
|
|
ch_in=pre_num_filters,
|
|
ch_out=out_channels[j],
|
|
filter_size=3,
|
|
stride=2,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
act="relu",
|
|
name=name + '_layer_' + str(i + 1) + '_' +
|
|
str(j + 1) + '_' + str(k + 1)))
|
|
pre_num_filters = out_channels[j]
|
|
self.residual_func_list.append(residual_func)
|
|
|
|
def forward(self, input):
|
|
outs = []
|
|
residual_func_idx = 0
|
|
for i in range(self._actual_ch):
|
|
residual = input[i]
|
|
for j in range(len(self._in_channels)):
|
|
if j > i:
|
|
y = self.residual_func_list[residual_func_idx](input[j])
|
|
residual_func_idx += 1
|
|
y = F.interpolate(y, scale_factor=2**(j - i))
|
|
residual = paddle.add(x=residual, y=y)
|
|
elif j < i:
|
|
y = input[j]
|
|
for k in range(i - j):
|
|
y = self.residual_func_list[residual_func_idx](y)
|
|
residual_func_idx += 1
|
|
|
|
residual = paddle.add(x=residual, y=y)
|
|
residual = F.relu(residual)
|
|
outs.append(residual)
|
|
|
|
return outs
|
|
|
|
|
|
@register
|
|
class HRNet(nn.Layer):
|
|
"""
|
|
HRNet, see https://arxiv.org/abs/1908.07919
|
|
|
|
Args:
|
|
width (int): the width of HRNet
|
|
has_se (bool): whether to add SE block for each stage
|
|
freeze_at (int): the stage to freeze
|
|
freeze_norm (bool): whether to freeze norm in HRNet
|
|
norm_decay (float): weight decay for normalization layer weights
|
|
return_idx (List): the stage to return
|
|
"""
|
|
|
|
def __init__(self,
|
|
width=18,
|
|
has_se=False,
|
|
freeze_at=0,
|
|
freeze_norm=True,
|
|
norm_decay=0.,
|
|
return_idx=[0, 1, 2, 3]):
|
|
super(HRNet, self).__init__()
|
|
|
|
self.width = width
|
|
self.has_se = has_se
|
|
if isinstance(return_idx, Integral):
|
|
return_idx = [return_idx]
|
|
|
|
assert len(return_idx) > 0, "need one or more return index"
|
|
self.freeze_at = freeze_at
|
|
self.return_idx = return_idx
|
|
|
|
self.channels = {
|
|
18: [[18, 36], [18, 36, 72], [18, 36, 72, 144]],
|
|
30: [[30, 60], [30, 60, 120], [30, 60, 120, 240]],
|
|
32: [[32, 64], [32, 64, 128], [32, 64, 128, 256]],
|
|
40: [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
|
|
44: [[44, 88], [44, 88, 176], [44, 88, 176, 352]],
|
|
48: [[48, 96], [48, 96, 192], [48, 96, 192, 384]],
|
|
60: [[60, 120], [60, 120, 240], [60, 120, 240, 480]],
|
|
64: [[64, 128], [64, 128, 256], [64, 128, 256, 512]]
|
|
}
|
|
|
|
channels_2, channels_3, channels_4 = self.channels[width]
|
|
num_modules_2, num_modules_3, num_modules_4 = 1, 4, 3
|
|
self._out_channels = channels_4
|
|
self._out_strides = [4, 8, 16, 32]
|
|
|
|
self.conv_layer1_1 = ConvNormLayer(
|
|
ch_in=3,
|
|
ch_out=64,
|
|
filter_size=3,
|
|
stride=2,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
act='relu',
|
|
name="layer1_1")
|
|
|
|
self.conv_layer1_2 = ConvNormLayer(
|
|
ch_in=64,
|
|
ch_out=64,
|
|
filter_size=3,
|
|
stride=2,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
act='relu',
|
|
name="layer1_2")
|
|
|
|
self.la1 = Layer1(
|
|
num_channels=64,
|
|
has_se=has_se,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
name="layer2")
|
|
|
|
self.tr1 = TransitionLayer(
|
|
in_channels=[256],
|
|
out_channels=channels_2,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
name="tr1")
|
|
|
|
self.st2 = Stage(
|
|
num_channels=channels_2,
|
|
num_modules=num_modules_2,
|
|
num_filters=channels_2,
|
|
has_se=self.has_se,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
name="st2")
|
|
|
|
self.tr2 = TransitionLayer(
|
|
in_channels=channels_2,
|
|
out_channels=channels_3,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
name="tr2")
|
|
|
|
self.st3 = Stage(
|
|
num_channels=channels_3,
|
|
num_modules=num_modules_3,
|
|
num_filters=channels_3,
|
|
has_se=self.has_se,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
name="st3")
|
|
|
|
self.tr3 = TransitionLayer(
|
|
in_channels=channels_3,
|
|
out_channels=channels_4,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
name="tr3")
|
|
self.st4 = Stage(
|
|
num_channels=channels_4,
|
|
num_modules=num_modules_4,
|
|
num_filters=channels_4,
|
|
has_se=self.has_se,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
name="st4")
|
|
|
|
def forward(self, inputs):
|
|
x = inputs['image']
|
|
conv1 = self.conv_layer1_1(x)
|
|
conv2 = self.conv_layer1_2(conv1)
|
|
|
|
la1 = self.la1(conv2)
|
|
tr1 = self.tr1([la1])
|
|
st2 = self.st2(tr1)
|
|
tr2 = self.tr2(st2)
|
|
|
|
st3 = self.st3(tr2)
|
|
tr3 = self.tr3(st3)
|
|
|
|
st4 = self.st4(tr3)
|
|
|
|
res = []
|
|
for i, layer in enumerate(st4):
|
|
if i == self.freeze_at:
|
|
layer.stop_gradient = True
|
|
if i in self.return_idx:
|
|
res.append(layer)
|
|
|
|
return res
|
|
|
|
@property
|
|
def out_shape(self):
|
|
return [
|
|
ShapeSpec(
|
|
channels=self._out_channels[i], stride=self._out_strides[i])
|
|
for i in self.return_idx
|
|
]
|
|
|