You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
496 lines
17 KiB
496 lines
17 KiB
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
from paddle import ParamAttr
|
|
from paddle.regularizer import L2Decay
|
|
from ppdet.core.workspace import register, serializable
|
|
from numbers import Integral
|
|
from ..shape_spec import ShapeSpec
|
|
|
|
__all__ = ['MobileNetV3']
|
|
|
|
|
|
def make_divisible(v, divisor=8, min_value=None):
|
|
if min_value is None:
|
|
min_value = divisor
|
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
|
if new_v < 0.9 * v:
|
|
new_v += divisor
|
|
return new_v
|
|
|
|
|
|
class ConvBNLayer(nn.Layer):
|
|
def __init__(self,
|
|
in_c,
|
|
out_c,
|
|
filter_size,
|
|
stride,
|
|
padding,
|
|
num_groups=1,
|
|
act=None,
|
|
lr_mult=1.,
|
|
conv_decay=0.,
|
|
norm_type='bn',
|
|
norm_decay=0.,
|
|
freeze_norm=False,
|
|
name=""):
|
|
super(ConvBNLayer, self).__init__()
|
|
self.act = act
|
|
self.conv = nn.Conv2D(
|
|
in_channels=in_c,
|
|
out_channels=out_c,
|
|
kernel_size=filter_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
groups=num_groups,
|
|
weight_attr=ParamAttr(
|
|
learning_rate=lr_mult,
|
|
regularizer=L2Decay(conv_decay),
|
|
name=name + "_weights"),
|
|
bias_attr=False)
|
|
|
|
norm_lr = 0. if freeze_norm else lr_mult
|
|
param_attr = ParamAttr(
|
|
learning_rate=norm_lr,
|
|
regularizer=L2Decay(norm_decay),
|
|
name=name + "_bn_scale",
|
|
trainable=False if freeze_norm else True)
|
|
bias_attr = ParamAttr(
|
|
learning_rate=norm_lr,
|
|
regularizer=L2Decay(norm_decay),
|
|
name=name + "_bn_offset",
|
|
trainable=False if freeze_norm else True)
|
|
global_stats = True if freeze_norm else False
|
|
if norm_type == 'sync_bn':
|
|
self.bn = nn.SyncBatchNorm(
|
|
out_c, weight_attr=param_attr, bias_attr=bias_attr)
|
|
else:
|
|
self.bn = nn.BatchNorm(
|
|
out_c,
|
|
act=None,
|
|
param_attr=param_attr,
|
|
bias_attr=bias_attr,
|
|
use_global_stats=global_stats,
|
|
moving_mean_name=name + '_bn_mean',
|
|
moving_variance_name=name + '_bn_variance')
|
|
norm_params = self.bn.parameters()
|
|
if freeze_norm:
|
|
for param in norm_params:
|
|
param.stop_gradient = True
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
if self.act is not None:
|
|
if self.act == "relu":
|
|
x = F.relu(x)
|
|
elif self.act == "relu6":
|
|
x = F.relu6(x)
|
|
elif self.act == "hard_swish":
|
|
x = F.hardswish(x)
|
|
else:
|
|
raise NotImplementedError(
|
|
"The activation function is selected incorrectly.")
|
|
return x
|
|
|
|
|
|
class ResidualUnit(nn.Layer):
|
|
def __init__(self,
|
|
in_c,
|
|
mid_c,
|
|
out_c,
|
|
filter_size,
|
|
stride,
|
|
use_se,
|
|
lr_mult,
|
|
conv_decay=0.,
|
|
norm_type='bn',
|
|
norm_decay=0.,
|
|
freeze_norm=False,
|
|
act=None,
|
|
return_list=False,
|
|
name=''):
|
|
super(ResidualUnit, self).__init__()
|
|
self.if_shortcut = stride == 1 and in_c == out_c
|
|
self.use_se = use_se
|
|
self.return_list = return_list
|
|
|
|
self.expand_conv = ConvBNLayer(
|
|
in_c=in_c,
|
|
out_c=mid_c,
|
|
filter_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
act=act,
|
|
lr_mult=lr_mult,
|
|
conv_decay=conv_decay,
|
|
norm_type=norm_type,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
name=name + "_expand")
|
|
self.bottleneck_conv = ConvBNLayer(
|
|
in_c=mid_c,
|
|
out_c=mid_c,
|
|
filter_size=filter_size,
|
|
stride=stride,
|
|
padding=int((filter_size - 1) // 2),
|
|
num_groups=mid_c,
|
|
act=act,
|
|
lr_mult=lr_mult,
|
|
conv_decay=conv_decay,
|
|
norm_type=norm_type,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
name=name + "_depthwise")
|
|
if self.use_se:
|
|
self.mid_se = SEModule(
|
|
mid_c, lr_mult, conv_decay, name=name + "_se")
|
|
self.linear_conv = ConvBNLayer(
|
|
in_c=mid_c,
|
|
out_c=out_c,
|
|
filter_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
act=None,
|
|
lr_mult=lr_mult,
|
|
conv_decay=conv_decay,
|
|
norm_type=norm_type,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
name=name + "_linear")
|
|
|
|
def forward(self, inputs):
|
|
y = self.expand_conv(inputs)
|
|
x = self.bottleneck_conv(y)
|
|
if self.use_se:
|
|
x = self.mid_se(x)
|
|
x = self.linear_conv(x)
|
|
if self.if_shortcut:
|
|
x = paddle.add(inputs, x)
|
|
if self.return_list:
|
|
return [y, x]
|
|
else:
|
|
return x
|
|
|
|
|
|
class SEModule(nn.Layer):
|
|
def __init__(self, channel, lr_mult, conv_decay, reduction=4, name=""):
|
|
super(SEModule, self).__init__()
|
|
self.avg_pool = nn.AdaptiveAvgPool2D(1)
|
|
mid_channels = int(channel // reduction)
|
|
self.conv1 = nn.Conv2D(
|
|
in_channels=channel,
|
|
out_channels=mid_channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
weight_attr=ParamAttr(
|
|
learning_rate=lr_mult,
|
|
regularizer=L2Decay(conv_decay),
|
|
name=name + "_1_weights"),
|
|
bias_attr=ParamAttr(
|
|
learning_rate=lr_mult,
|
|
regularizer=L2Decay(conv_decay),
|
|
name=name + "_1_offset"))
|
|
self.conv2 = nn.Conv2D(
|
|
in_channels=mid_channels,
|
|
out_channels=channel,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
weight_attr=ParamAttr(
|
|
learning_rate=lr_mult,
|
|
regularizer=L2Decay(conv_decay),
|
|
name=name + "_2_weights"),
|
|
bias_attr=ParamAttr(
|
|
learning_rate=lr_mult,
|
|
regularizer=L2Decay(conv_decay),
|
|
name=name + "_2_offset"))
|
|
|
|
def forward(self, inputs):
|
|
outputs = self.avg_pool(inputs)
|
|
outputs = self.conv1(outputs)
|
|
outputs = F.relu(outputs)
|
|
outputs = self.conv2(outputs)
|
|
outputs = F.hardsigmoid(outputs, slope=0.2, offset=0.5)
|
|
return paddle.multiply(x=inputs, y=outputs)
|
|
|
|
|
|
class ExtraBlockDW(nn.Layer):
|
|
def __init__(self,
|
|
in_c,
|
|
ch_1,
|
|
ch_2,
|
|
stride,
|
|
lr_mult,
|
|
conv_decay=0.,
|
|
norm_type='bn',
|
|
norm_decay=0.,
|
|
freeze_norm=False,
|
|
name=None):
|
|
super(ExtraBlockDW, self).__init__()
|
|
self.pointwise_conv = ConvBNLayer(
|
|
in_c=in_c,
|
|
out_c=ch_1,
|
|
filter_size=1,
|
|
stride=1,
|
|
padding='SAME',
|
|
act='relu6',
|
|
lr_mult=lr_mult,
|
|
conv_decay=conv_decay,
|
|
norm_type=norm_type,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
name=name + "_extra1")
|
|
self.depthwise_conv = ConvBNLayer(
|
|
in_c=ch_1,
|
|
out_c=ch_2,
|
|
filter_size=3,
|
|
stride=stride,
|
|
padding='SAME',
|
|
num_groups=int(ch_1),
|
|
act='relu6',
|
|
lr_mult=lr_mult,
|
|
conv_decay=conv_decay,
|
|
norm_type=norm_type,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
name=name + "_extra2_dw")
|
|
self.normal_conv = ConvBNLayer(
|
|
in_c=ch_2,
|
|
out_c=ch_2,
|
|
filter_size=1,
|
|
stride=1,
|
|
padding='SAME',
|
|
act='relu6',
|
|
lr_mult=lr_mult,
|
|
conv_decay=conv_decay,
|
|
norm_type=norm_type,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
name=name + "_extra2_sep")
|
|
|
|
def forward(self, inputs):
|
|
x = self.pointwise_conv(inputs)
|
|
x = self.depthwise_conv(x)
|
|
x = self.normal_conv(x)
|
|
return x
|
|
|
|
|
|
@register
|
|
@serializable
|
|
class MobileNetV3(nn.Layer):
|
|
__shared__ = ['norm_type']
|
|
|
|
def __init__(
|
|
self,
|
|
scale=1.0,
|
|
model_name="large",
|
|
feature_maps=[6, 12, 15],
|
|
with_extra_blocks=False,
|
|
extra_block_filters=[[256, 512], [128, 256], [128, 256], [64, 128]],
|
|
lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0],
|
|
conv_decay=0.0,
|
|
multiplier=1.0,
|
|
norm_type='bn',
|
|
norm_decay=0.0,
|
|
freeze_norm=False):
|
|
super(MobileNetV3, self).__init__()
|
|
if isinstance(feature_maps, Integral):
|
|
feature_maps = [feature_maps]
|
|
if norm_type == 'sync_bn' and freeze_norm:
|
|
raise ValueError(
|
|
"The norm_type should not be sync_bn when freeze_norm is True")
|
|
self.feature_maps = feature_maps
|
|
self.with_extra_blocks = with_extra_blocks
|
|
self.extra_block_filters = extra_block_filters
|
|
|
|
inplanes = 16
|
|
if model_name == "large":
|
|
self.cfg = [
|
|
# k, exp, c, se, nl, s,
|
|
[3, 16, 16, False, "relu", 1],
|
|
[3, 64, 24, False, "relu", 2],
|
|
[3, 72, 24, False, "relu", 1],
|
|
[5, 72, 40, True, "relu", 2], # RCNN output
|
|
[5, 120, 40, True, "relu", 1],
|
|
[5, 120, 40, True, "relu", 1], # YOLOv3 output
|
|
[3, 240, 80, False, "hard_swish", 2], # RCNN output
|
|
[3, 200, 80, False, "hard_swish", 1],
|
|
[3, 184, 80, False, "hard_swish", 1],
|
|
[3, 184, 80, False, "hard_swish", 1],
|
|
[3, 480, 112, True, "hard_swish", 1],
|
|
[3, 672, 112, True, "hard_swish", 1], # YOLOv3 output
|
|
[5, 672, 160, True, "hard_swish", 2], # SSD/SSDLite/RCNN output
|
|
[5, 960, 160, True, "hard_swish", 1],
|
|
[5, 960, 160, True, "hard_swish", 1], # YOLOv3 output
|
|
]
|
|
elif model_name == "small":
|
|
self.cfg = [
|
|
# k, exp, c, se, nl, s,
|
|
[3, 16, 16, True, "relu", 2],
|
|
[3, 72, 24, False, "relu", 2], # RCNN output
|
|
[3, 88, 24, False, "relu", 1], # YOLOv3 output
|
|
[5, 96, 40, True, "hard_swish", 2], # RCNN output
|
|
[5, 240, 40, True, "hard_swish", 1],
|
|
[5, 240, 40, True, "hard_swish", 1],
|
|
[5, 120, 48, True, "hard_swish", 1],
|
|
[5, 144, 48, True, "hard_swish", 1], # YOLOv3 output
|
|
[5, 288, 96, True, "hard_swish", 2], # SSD/SSDLite/RCNN output
|
|
[5, 576, 96, True, "hard_swish", 1],
|
|
[5, 576, 96, True, "hard_swish", 1], # YOLOv3 output
|
|
]
|
|
else:
|
|
raise NotImplementedError(
|
|
"mode[{}_model] is not implemented!".format(model_name))
|
|
|
|
if multiplier != 1.0:
|
|
self.cfg[-3][2] = int(self.cfg[-3][2] * multiplier)
|
|
self.cfg[-2][1] = int(self.cfg[-2][1] * multiplier)
|
|
self.cfg[-2][2] = int(self.cfg[-2][2] * multiplier)
|
|
self.cfg[-1][1] = int(self.cfg[-1][1] * multiplier)
|
|
self.cfg[-1][2] = int(self.cfg[-1][2] * multiplier)
|
|
|
|
self.conv1 = ConvBNLayer(
|
|
in_c=3,
|
|
out_c=make_divisible(inplanes * scale),
|
|
filter_size=3,
|
|
stride=2,
|
|
padding=1,
|
|
num_groups=1,
|
|
act="hard_swish",
|
|
lr_mult=lr_mult_list[0],
|
|
conv_decay=conv_decay,
|
|
norm_type=norm_type,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
name="conv1")
|
|
|
|
self._out_channels = []
|
|
self.block_list = []
|
|
i = 0
|
|
inplanes = make_divisible(inplanes * scale)
|
|
for (k, exp, c, se, nl, s) in self.cfg:
|
|
lr_idx = min(i // 3, len(lr_mult_list) - 1)
|
|
lr_mult = lr_mult_list[lr_idx]
|
|
|
|
# for SSD/SSDLite, first head input is after ResidualUnit expand_conv
|
|
return_list = self.with_extra_blocks and i + 2 in self.feature_maps
|
|
|
|
block = self.add_sublayer(
|
|
"conv" + str(i + 2),
|
|
sublayer=ResidualUnit(
|
|
in_c=inplanes,
|
|
mid_c=make_divisible(scale * exp),
|
|
out_c=make_divisible(scale * c),
|
|
filter_size=k,
|
|
stride=s,
|
|
use_se=se,
|
|
act=nl,
|
|
lr_mult=lr_mult,
|
|
conv_decay=conv_decay,
|
|
norm_type=norm_type,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
return_list=return_list,
|
|
name="conv" + str(i + 2)))
|
|
self.block_list.append(block)
|
|
inplanes = make_divisible(scale * c)
|
|
i += 1
|
|
self._update_out_channels(
|
|
make_divisible(scale * exp)
|
|
if return_list else inplanes, i + 1, feature_maps)
|
|
|
|
if self.with_extra_blocks:
|
|
self.extra_block_list = []
|
|
extra_out_c = make_divisible(scale * self.cfg[-1][1])
|
|
lr_idx = min(i // 3, len(lr_mult_list) - 1)
|
|
lr_mult = lr_mult_list[lr_idx]
|
|
|
|
conv_extra = self.add_sublayer(
|
|
"conv" + str(i + 2),
|
|
sublayer=ConvBNLayer(
|
|
in_c=inplanes,
|
|
out_c=extra_out_c,
|
|
filter_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
num_groups=1,
|
|
act="hard_swish",
|
|
lr_mult=lr_mult,
|
|
conv_decay=conv_decay,
|
|
norm_type=norm_type,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
name="conv" + str(i + 2)))
|
|
self.extra_block_list.append(conv_extra)
|
|
i += 1
|
|
self._update_out_channels(extra_out_c, i + 1, feature_maps)
|
|
|
|
for j, block_filter in enumerate(self.extra_block_filters):
|
|
in_c = extra_out_c if j == 0 else self.extra_block_filters[j -
|
|
1][1]
|
|
conv_extra = self.add_sublayer(
|
|
"conv" + str(i + 2),
|
|
sublayer=ExtraBlockDW(
|
|
in_c,
|
|
block_filter[0],
|
|
block_filter[1],
|
|
stride=2,
|
|
lr_mult=lr_mult,
|
|
conv_decay=conv_decay,
|
|
norm_type=norm_type,
|
|
norm_decay=norm_decay,
|
|
freeze_norm=freeze_norm,
|
|
name='conv' + str(i + 2)))
|
|
self.extra_block_list.append(conv_extra)
|
|
i += 1
|
|
self._update_out_channels(block_filter[1], i + 1, feature_maps)
|
|
|
|
def _update_out_channels(self, channel, feature_idx, feature_maps):
|
|
if feature_idx in feature_maps:
|
|
self._out_channels.append(channel)
|
|
|
|
def forward(self, inputs):
|
|
x = self.conv1(inputs['image'])
|
|
outs = []
|
|
for idx, block in enumerate(self.block_list):
|
|
x = block(x)
|
|
if idx + 2 in self.feature_maps:
|
|
if isinstance(x, list):
|
|
outs.append(x[0])
|
|
x = x[1]
|
|
else:
|
|
outs.append(x)
|
|
|
|
if not self.with_extra_blocks:
|
|
return outs
|
|
|
|
for i, block in enumerate(self.extra_block_list):
|
|
idx = i + len(self.block_list)
|
|
x = block(x)
|
|
if idx + 2 in self.feature_maps:
|
|
outs.append(x)
|
|
return outs
|
|
|
|
@property
|
|
def out_shape(self):
|
|
return [ShapeSpec(channels=c) for c in self._out_channels]
|
|
|