You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

368 lines
13 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import Normal, XavierUniform, KaimingNormal
from paddle.regularizer import L2Decay
from ppdet.core.workspace import register, create
from ppdet.modeling import ops
from .roi_extractor import RoIAlign
from ..shape_spec import ShapeSpec
from ..bbox_utils import bbox2delta
from ppdet.modeling.layers import ConvNormLayer
__all__ = ['TwoFCHead', 'XConvNormHead', 'BBoxHead']
@register
class TwoFCHead(nn.Layer):
"""
RCNN bbox head with Two fc layers to extract feature
Args:
in_channel (int): Input channel which can be derived by from_config
out_channel (int): Output channel
resolution (int): Resolution of input feature map, default 7
"""
def __init__(self, in_channel=256, out_channel=1024, resolution=7):
super(TwoFCHead, self).__init__()
self.in_channel = in_channel
self.out_channel = out_channel
fan = in_channel * resolution * resolution
self.fc6 = nn.Linear(
in_channel * resolution * resolution,
out_channel,
weight_attr=paddle.ParamAttr(
initializer=XavierUniform(fan_out=fan)))
self.fc7 = nn.Linear(
out_channel,
out_channel,
weight_attr=paddle.ParamAttr(initializer=XavierUniform()))
@classmethod
def from_config(cls, cfg, input_shape):
s = input_shape
s = s[0] if isinstance(s, (list, tuple)) else s
return {'in_channel': s.channels}
@property
def out_shape(self):
return [ShapeSpec(channels=self.out_channel, )]
def forward(self, rois_feat):
rois_feat = paddle.flatten(rois_feat, start_axis=1, stop_axis=-1)
fc6 = self.fc6(rois_feat)
fc6 = F.relu(fc6)
fc7 = self.fc7(fc6)
fc7 = F.relu(fc7)
return fc7
@register
class XConvNormHead(nn.Layer):
__shared__ = ['norm_type', 'freeze_norm']
"""
RCNN bbox head with serveral convolution layers
Args:
in_channel (int): Input channels which can be derived by from_config
num_convs (int): The number of conv layers
conv_dim (int): The number of channels for the conv layers
out_channel (int): Output channels
resolution (int): Resolution of input feature map
norm_type (string): Norm type, bn, gn, sync_bn are available,
default `gn`
freeze_norm (bool): Whether to freeze the norm
stage_name (string): Prefix name for conv layer, '' by default
"""
def __init__(self,
in_channel=256,
num_convs=4,
conv_dim=256,
out_channel=1024,
resolution=7,
norm_type='gn',
freeze_norm=False,
stage_name=''):
super(XConvNormHead, self).__init__()
self.in_channel = in_channel
self.num_convs = num_convs
self.conv_dim = conv_dim
self.out_channel = out_channel
self.norm_type = norm_type
self.freeze_norm = freeze_norm
self.bbox_head_convs = []
fan = conv_dim * 3 * 3
initializer = KaimingNormal(fan_in=fan)
for i in range(self.num_convs):
in_c = in_channel if i == 0 else conv_dim
head_conv_name = stage_name + 'bbox_head_conv{}'.format(i)
head_conv = self.add_sublayer(
head_conv_name,
ConvNormLayer(
ch_in=in_c,
ch_out=conv_dim,
filter_size=3,
stride=1,
norm_type=self.norm_type,
freeze_norm=self.freeze_norm,
initializer=initializer))
self.bbox_head_convs.append(head_conv)
fan = conv_dim * resolution * resolution
self.fc6 = nn.Linear(
conv_dim * resolution * resolution,
out_channel,
weight_attr=paddle.ParamAttr(
initializer=XavierUniform(fan_out=fan)),
bias_attr=paddle.ParamAttr(
learning_rate=2., regularizer=L2Decay(0.)))
@classmethod
def from_config(cls, cfg, input_shape):
s = input_shape
s = s[0] if isinstance(s, (list, tuple)) else s
return {'in_channel': s.channels}
@property
def out_shape(self):
return [ShapeSpec(channels=self.out_channel, )]
def forward(self, rois_feat):
for i in range(self.num_convs):
rois_feat = F.relu(self.bbox_head_convs[i](rois_feat))
rois_feat = paddle.flatten(rois_feat, start_axis=1, stop_axis=-1)
fc6 = F.relu(self.fc6(rois_feat))
return fc6
@register
class BBoxHead(nn.Layer):
__shared__ = ['num_classes']
__inject__ = ['bbox_assigner', 'bbox_loss']
"""
RCNN bbox head
Args:
head (nn.Layer): Extract feature in bbox head
in_channel (int): Input channel after RoI extractor
roi_extractor (object): The module of RoI Extractor
bbox_assigner (object): The module of Box Assigner, label and sample the
box.
with_pool (bool): Whether to use pooling for the RoI feature.
num_classes (int): The number of classes
bbox_weight (List[float]): The weight to get the decode box
"""
def __init__(self,
head,
in_channel,
roi_extractor=RoIAlign().__dict__,
bbox_assigner='BboxAssigner',
with_pool=False,
num_classes=80,
bbox_weight=[10., 10., 5., 5.],
bbox_loss=None):
super(BBoxHead, self).__init__()
self.head = head
self.roi_extractor = roi_extractor
if isinstance(roi_extractor, dict):
self.roi_extractor = RoIAlign(**roi_extractor)
self.bbox_assigner = bbox_assigner
self.with_pool = with_pool
self.num_classes = num_classes
self.bbox_weight = bbox_weight
self.bbox_loss = bbox_loss
self.bbox_score = nn.Linear(
in_channel,
self.num_classes + 1,
weight_attr=paddle.ParamAttr(initializer=Normal(
mean=0.0, std=0.01)))
self.bbox_delta = nn.Linear(
in_channel,
4 * self.num_classes,
weight_attr=paddle.ParamAttr(initializer=Normal(
mean=0.0, std=0.001)))
self.assigned_label = None
self.assigned_rois = None
@classmethod
def from_config(cls, cfg, input_shape):
roi_pooler = cfg['roi_extractor']
assert isinstance(roi_pooler, dict)
kwargs = RoIAlign.from_config(cfg, input_shape)
roi_pooler.update(kwargs)
kwargs = {'input_shape': input_shape}
head = create(cfg['head'], **kwargs)
return {
'roi_extractor': roi_pooler,
'head': head,
'in_channel': head.out_shape[0].channels
}
def forward(self, body_feats=None, rois=None, rois_num=None, inputs=None):
"""
body_feats (list[Tensor]): Feature maps from backbone
rois (list[Tensor]): RoIs generated from RPN module
rois_num (Tensor): The number of RoIs in each image
inputs (dict{Tensor}): The ground-truth of image
"""
if self.training:
rois, rois_num, targets = self.bbox_assigner(rois, rois_num, inputs)
self.assigned_rois = (rois, rois_num)
self.assigned_targets = targets
rois_feat = self.roi_extractor(body_feats, rois, rois_num)
bbox_feat = self.head(rois_feat)
if self.with_pool:
feat = F.adaptive_avg_pool2d(bbox_feat, output_size=1)
feat = paddle.squeeze(feat, axis=[2, 3])
else:
feat = bbox_feat
scores = self.bbox_score(feat)
deltas = self.bbox_delta(feat)
if self.training:
loss = self.get_loss(scores, deltas, targets, rois,
self.bbox_weight)
return loss, bbox_feat
else:
pred = self.get_prediction(scores, deltas)
return pred, self.head
def get_loss(self, scores, deltas, targets, rois, bbox_weight):
"""
scores (Tensor): scores from bbox head outputs
deltas (Tensor): deltas from bbox head outputs
targets (list[List[Tensor]]): bbox targets containing tgt_labels, tgt_bboxes and tgt_gt_inds
rois (List[Tensor]): RoIs generated in each batch
"""
# TODO: better pass args
tgt_labels, tgt_bboxes, tgt_gt_inds = targets
tgt_labels = paddle.concat(tgt_labels) if len(
tgt_labels) > 1 else tgt_labels[0]
tgt_labels = tgt_labels.cast('int64')
tgt_labels.stop_gradient = True
loss_bbox_cls = F.cross_entropy(
input=scores, label=tgt_labels, reduction='mean')
# bbox reg
cls_agnostic_bbox_reg = deltas.shape[1] == 4
fg_inds = paddle.nonzero(
paddle.logical_and(tgt_labels >= 0, tgt_labels <
self.num_classes)).flatten()
cls_name = 'loss_bbox_cls'
reg_name = 'loss_bbox_reg'
loss_bbox = {}
loss_weight = 1.
if fg_inds.numel() == 0:
fg_inds = paddle.zeros([1], dtype='int32')
loss_weight = 0.
if cls_agnostic_bbox_reg:
reg_delta = paddle.gather(deltas, fg_inds)
else:
fg_gt_classes = paddle.gather(tgt_labels, fg_inds)
reg_row_inds = paddle.arange(fg_gt_classes.shape[0]).unsqueeze(1)
reg_row_inds = paddle.tile(reg_row_inds, [1, 4]).reshape([-1, 1])
reg_col_inds = 4 * fg_gt_classes.unsqueeze(1) + paddle.arange(4)
reg_col_inds = reg_col_inds.reshape([-1, 1])
reg_inds = paddle.concat([reg_row_inds, reg_col_inds], axis=1)
reg_delta = paddle.gather(deltas, fg_inds)
reg_delta = paddle.gather_nd(reg_delta, reg_inds).reshape([-1, 4])
rois = paddle.concat(rois) if len(rois) > 1 else rois[0]
tgt_bboxes = paddle.concat(tgt_bboxes) if len(
tgt_bboxes) > 1 else tgt_bboxes[0]
reg_target = bbox2delta(rois, tgt_bboxes, bbox_weight)
reg_target = paddle.gather(reg_target, fg_inds)
reg_target.stop_gradient = True
if self.bbox_loss is not None:
reg_delta = self.bbox_transform(reg_delta)
reg_target = self.bbox_transform(reg_target)
loss_bbox_reg = self.bbox_loss(
reg_delta, reg_target).sum() / tgt_labels.shape[0]
loss_bbox_reg *= self.num_classes
else:
loss_bbox_reg = paddle.abs(reg_delta - reg_target).sum(
) / tgt_labels.shape[0]
loss_bbox[cls_name] = loss_bbox_cls * loss_weight
loss_bbox[reg_name] = loss_bbox_reg * loss_weight
return loss_bbox
def bbox_transform(self, deltas, weights=[0.1, 0.1, 0.2, 0.2]):
wx, wy, ww, wh = weights
deltas = paddle.reshape(deltas, shape=(0, -1, 4))
dx = paddle.slice(deltas, axes=[2], starts=[0], ends=[1]) * wx
dy = paddle.slice(deltas, axes=[2], starts=[1], ends=[2]) * wy
dw = paddle.slice(deltas, axes=[2], starts=[2], ends=[3]) * ww
dh = paddle.slice(deltas, axes=[2], starts=[3], ends=[4]) * wh
dw = paddle.clip(dw, -1.e10, np.log(1000. / 16))
dh = paddle.clip(dh, -1.e10, np.log(1000. / 16))
pred_ctr_x = dx
pred_ctr_y = dy
pred_w = paddle.exp(dw)
pred_h = paddle.exp(dh)
x1 = pred_ctr_x - 0.5 * pred_w
y1 = pred_ctr_y - 0.5 * pred_h
x2 = pred_ctr_x + 0.5 * pred_w
y2 = pred_ctr_y + 0.5 * pred_h
x1 = paddle.reshape(x1, shape=(-1, ))
y1 = paddle.reshape(y1, shape=(-1, ))
x2 = paddle.reshape(x2, shape=(-1, ))
y2 = paddle.reshape(y2, shape=(-1, ))
return paddle.concat([x1, y1, x2, y2])
def get_prediction(self, score, delta):
bbox_prob = F.softmax(score)
return delta, bbox_prob
def get_head(self, ):
return self.head
def get_assigned_targets(self, ):
return self.assigned_targets
def get_assigned_rois(self, ):
return self.assigned_rois