You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
368 lines
13 KiB
368 lines
13 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
from paddle.nn.initializer import Normal, XavierUniform, KaimingNormal
|
|
from paddle.regularizer import L2Decay
|
|
|
|
from ppdet.core.workspace import register, create
|
|
from ppdet.modeling import ops
|
|
|
|
from .roi_extractor import RoIAlign
|
|
from ..shape_spec import ShapeSpec
|
|
from ..bbox_utils import bbox2delta
|
|
from ppdet.modeling.layers import ConvNormLayer
|
|
|
|
__all__ = ['TwoFCHead', 'XConvNormHead', 'BBoxHead']
|
|
|
|
|
|
@register
|
|
class TwoFCHead(nn.Layer):
|
|
"""
|
|
RCNN bbox head with Two fc layers to extract feature
|
|
|
|
Args:
|
|
in_channel (int): Input channel which can be derived by from_config
|
|
out_channel (int): Output channel
|
|
resolution (int): Resolution of input feature map, default 7
|
|
"""
|
|
|
|
def __init__(self, in_channel=256, out_channel=1024, resolution=7):
|
|
super(TwoFCHead, self).__init__()
|
|
self.in_channel = in_channel
|
|
self.out_channel = out_channel
|
|
fan = in_channel * resolution * resolution
|
|
self.fc6 = nn.Linear(
|
|
in_channel * resolution * resolution,
|
|
out_channel,
|
|
weight_attr=paddle.ParamAttr(
|
|
initializer=XavierUniform(fan_out=fan)))
|
|
|
|
self.fc7 = nn.Linear(
|
|
out_channel,
|
|
out_channel,
|
|
weight_attr=paddle.ParamAttr(initializer=XavierUniform()))
|
|
|
|
@classmethod
|
|
def from_config(cls, cfg, input_shape):
|
|
s = input_shape
|
|
s = s[0] if isinstance(s, (list, tuple)) else s
|
|
return {'in_channel': s.channels}
|
|
|
|
@property
|
|
def out_shape(self):
|
|
return [ShapeSpec(channels=self.out_channel, )]
|
|
|
|
def forward(self, rois_feat):
|
|
rois_feat = paddle.flatten(rois_feat, start_axis=1, stop_axis=-1)
|
|
fc6 = self.fc6(rois_feat)
|
|
fc6 = F.relu(fc6)
|
|
fc7 = self.fc7(fc6)
|
|
fc7 = F.relu(fc7)
|
|
return fc7
|
|
|
|
|
|
@register
|
|
class XConvNormHead(nn.Layer):
|
|
__shared__ = ['norm_type', 'freeze_norm']
|
|
"""
|
|
RCNN bbox head with serveral convolution layers
|
|
|
|
Args:
|
|
in_channel (int): Input channels which can be derived by from_config
|
|
num_convs (int): The number of conv layers
|
|
conv_dim (int): The number of channels for the conv layers
|
|
out_channel (int): Output channels
|
|
resolution (int): Resolution of input feature map
|
|
norm_type (string): Norm type, bn, gn, sync_bn are available,
|
|
default `gn`
|
|
freeze_norm (bool): Whether to freeze the norm
|
|
stage_name (string): Prefix name for conv layer, '' by default
|
|
"""
|
|
|
|
def __init__(self,
|
|
in_channel=256,
|
|
num_convs=4,
|
|
conv_dim=256,
|
|
out_channel=1024,
|
|
resolution=7,
|
|
norm_type='gn',
|
|
freeze_norm=False,
|
|
stage_name=''):
|
|
super(XConvNormHead, self).__init__()
|
|
self.in_channel = in_channel
|
|
self.num_convs = num_convs
|
|
self.conv_dim = conv_dim
|
|
self.out_channel = out_channel
|
|
self.norm_type = norm_type
|
|
self.freeze_norm = freeze_norm
|
|
|
|
self.bbox_head_convs = []
|
|
fan = conv_dim * 3 * 3
|
|
initializer = KaimingNormal(fan_in=fan)
|
|
for i in range(self.num_convs):
|
|
in_c = in_channel if i == 0 else conv_dim
|
|
head_conv_name = stage_name + 'bbox_head_conv{}'.format(i)
|
|
head_conv = self.add_sublayer(
|
|
head_conv_name,
|
|
ConvNormLayer(
|
|
ch_in=in_c,
|
|
ch_out=conv_dim,
|
|
filter_size=3,
|
|
stride=1,
|
|
norm_type=self.norm_type,
|
|
freeze_norm=self.freeze_norm,
|
|
initializer=initializer))
|
|
self.bbox_head_convs.append(head_conv)
|
|
|
|
fan = conv_dim * resolution * resolution
|
|
self.fc6 = nn.Linear(
|
|
conv_dim * resolution * resolution,
|
|
out_channel,
|
|
weight_attr=paddle.ParamAttr(
|
|
initializer=XavierUniform(fan_out=fan)),
|
|
bias_attr=paddle.ParamAttr(
|
|
learning_rate=2., regularizer=L2Decay(0.)))
|
|
|
|
@classmethod
|
|
def from_config(cls, cfg, input_shape):
|
|
s = input_shape
|
|
s = s[0] if isinstance(s, (list, tuple)) else s
|
|
return {'in_channel': s.channels}
|
|
|
|
@property
|
|
def out_shape(self):
|
|
return [ShapeSpec(channels=self.out_channel, )]
|
|
|
|
def forward(self, rois_feat):
|
|
for i in range(self.num_convs):
|
|
rois_feat = F.relu(self.bbox_head_convs[i](rois_feat))
|
|
rois_feat = paddle.flatten(rois_feat, start_axis=1, stop_axis=-1)
|
|
fc6 = F.relu(self.fc6(rois_feat))
|
|
return fc6
|
|
|
|
|
|
@register
|
|
class BBoxHead(nn.Layer):
|
|
__shared__ = ['num_classes']
|
|
__inject__ = ['bbox_assigner', 'bbox_loss']
|
|
"""
|
|
RCNN bbox head
|
|
|
|
Args:
|
|
head (nn.Layer): Extract feature in bbox head
|
|
in_channel (int): Input channel after RoI extractor
|
|
roi_extractor (object): The module of RoI Extractor
|
|
bbox_assigner (object): The module of Box Assigner, label and sample the
|
|
box.
|
|
with_pool (bool): Whether to use pooling for the RoI feature.
|
|
num_classes (int): The number of classes
|
|
bbox_weight (List[float]): The weight to get the decode box
|
|
"""
|
|
|
|
def __init__(self,
|
|
head,
|
|
in_channel,
|
|
roi_extractor=RoIAlign().__dict__,
|
|
bbox_assigner='BboxAssigner',
|
|
with_pool=False,
|
|
num_classes=80,
|
|
bbox_weight=[10., 10., 5., 5.],
|
|
bbox_loss=None):
|
|
super(BBoxHead, self).__init__()
|
|
self.head = head
|
|
self.roi_extractor = roi_extractor
|
|
if isinstance(roi_extractor, dict):
|
|
self.roi_extractor = RoIAlign(**roi_extractor)
|
|
self.bbox_assigner = bbox_assigner
|
|
|
|
self.with_pool = with_pool
|
|
self.num_classes = num_classes
|
|
self.bbox_weight = bbox_weight
|
|
self.bbox_loss = bbox_loss
|
|
|
|
self.bbox_score = nn.Linear(
|
|
in_channel,
|
|
self.num_classes + 1,
|
|
weight_attr=paddle.ParamAttr(initializer=Normal(
|
|
mean=0.0, std=0.01)))
|
|
|
|
self.bbox_delta = nn.Linear(
|
|
in_channel,
|
|
4 * self.num_classes,
|
|
weight_attr=paddle.ParamAttr(initializer=Normal(
|
|
mean=0.0, std=0.001)))
|
|
self.assigned_label = None
|
|
self.assigned_rois = None
|
|
|
|
@classmethod
|
|
def from_config(cls, cfg, input_shape):
|
|
roi_pooler = cfg['roi_extractor']
|
|
assert isinstance(roi_pooler, dict)
|
|
kwargs = RoIAlign.from_config(cfg, input_shape)
|
|
roi_pooler.update(kwargs)
|
|
kwargs = {'input_shape': input_shape}
|
|
head = create(cfg['head'], **kwargs)
|
|
return {
|
|
'roi_extractor': roi_pooler,
|
|
'head': head,
|
|
'in_channel': head.out_shape[0].channels
|
|
}
|
|
|
|
def forward(self, body_feats=None, rois=None, rois_num=None, inputs=None):
|
|
"""
|
|
body_feats (list[Tensor]): Feature maps from backbone
|
|
rois (list[Tensor]): RoIs generated from RPN module
|
|
rois_num (Tensor): The number of RoIs in each image
|
|
inputs (dict{Tensor}): The ground-truth of image
|
|
"""
|
|
if self.training:
|
|
rois, rois_num, targets = self.bbox_assigner(rois, rois_num, inputs)
|
|
self.assigned_rois = (rois, rois_num)
|
|
self.assigned_targets = targets
|
|
|
|
rois_feat = self.roi_extractor(body_feats, rois, rois_num)
|
|
bbox_feat = self.head(rois_feat)
|
|
if self.with_pool:
|
|
feat = F.adaptive_avg_pool2d(bbox_feat, output_size=1)
|
|
feat = paddle.squeeze(feat, axis=[2, 3])
|
|
else:
|
|
feat = bbox_feat
|
|
scores = self.bbox_score(feat)
|
|
deltas = self.bbox_delta(feat)
|
|
|
|
if self.training:
|
|
loss = self.get_loss(scores, deltas, targets, rois,
|
|
self.bbox_weight)
|
|
return loss, bbox_feat
|
|
else:
|
|
pred = self.get_prediction(scores, deltas)
|
|
return pred, self.head
|
|
|
|
def get_loss(self, scores, deltas, targets, rois, bbox_weight):
|
|
"""
|
|
scores (Tensor): scores from bbox head outputs
|
|
deltas (Tensor): deltas from bbox head outputs
|
|
targets (list[List[Tensor]]): bbox targets containing tgt_labels, tgt_bboxes and tgt_gt_inds
|
|
rois (List[Tensor]): RoIs generated in each batch
|
|
"""
|
|
# TODO: better pass args
|
|
tgt_labels, tgt_bboxes, tgt_gt_inds = targets
|
|
tgt_labels = paddle.concat(tgt_labels) if len(
|
|
tgt_labels) > 1 else tgt_labels[0]
|
|
tgt_labels = tgt_labels.cast('int64')
|
|
tgt_labels.stop_gradient = True
|
|
loss_bbox_cls = F.cross_entropy(
|
|
input=scores, label=tgt_labels, reduction='mean')
|
|
# bbox reg
|
|
|
|
cls_agnostic_bbox_reg = deltas.shape[1] == 4
|
|
|
|
fg_inds = paddle.nonzero(
|
|
paddle.logical_and(tgt_labels >= 0, tgt_labels <
|
|
self.num_classes)).flatten()
|
|
|
|
cls_name = 'loss_bbox_cls'
|
|
reg_name = 'loss_bbox_reg'
|
|
loss_bbox = {}
|
|
|
|
loss_weight = 1.
|
|
if fg_inds.numel() == 0:
|
|
fg_inds = paddle.zeros([1], dtype='int32')
|
|
loss_weight = 0.
|
|
|
|
if cls_agnostic_bbox_reg:
|
|
reg_delta = paddle.gather(deltas, fg_inds)
|
|
else:
|
|
fg_gt_classes = paddle.gather(tgt_labels, fg_inds)
|
|
|
|
reg_row_inds = paddle.arange(fg_gt_classes.shape[0]).unsqueeze(1)
|
|
reg_row_inds = paddle.tile(reg_row_inds, [1, 4]).reshape([-1, 1])
|
|
|
|
reg_col_inds = 4 * fg_gt_classes.unsqueeze(1) + paddle.arange(4)
|
|
|
|
reg_col_inds = reg_col_inds.reshape([-1, 1])
|
|
reg_inds = paddle.concat([reg_row_inds, reg_col_inds], axis=1)
|
|
|
|
reg_delta = paddle.gather(deltas, fg_inds)
|
|
reg_delta = paddle.gather_nd(reg_delta, reg_inds).reshape([-1, 4])
|
|
rois = paddle.concat(rois) if len(rois) > 1 else rois[0]
|
|
tgt_bboxes = paddle.concat(tgt_bboxes) if len(
|
|
tgt_bboxes) > 1 else tgt_bboxes[0]
|
|
|
|
reg_target = bbox2delta(rois, tgt_bboxes, bbox_weight)
|
|
reg_target = paddle.gather(reg_target, fg_inds)
|
|
reg_target.stop_gradient = True
|
|
|
|
if self.bbox_loss is not None:
|
|
reg_delta = self.bbox_transform(reg_delta)
|
|
reg_target = self.bbox_transform(reg_target)
|
|
loss_bbox_reg = self.bbox_loss(
|
|
reg_delta, reg_target).sum() / tgt_labels.shape[0]
|
|
loss_bbox_reg *= self.num_classes
|
|
else:
|
|
loss_bbox_reg = paddle.abs(reg_delta - reg_target).sum(
|
|
) / tgt_labels.shape[0]
|
|
|
|
loss_bbox[cls_name] = loss_bbox_cls * loss_weight
|
|
loss_bbox[reg_name] = loss_bbox_reg * loss_weight
|
|
|
|
return loss_bbox
|
|
|
|
def bbox_transform(self, deltas, weights=[0.1, 0.1, 0.2, 0.2]):
|
|
wx, wy, ww, wh = weights
|
|
|
|
deltas = paddle.reshape(deltas, shape=(0, -1, 4))
|
|
|
|
dx = paddle.slice(deltas, axes=[2], starts=[0], ends=[1]) * wx
|
|
dy = paddle.slice(deltas, axes=[2], starts=[1], ends=[2]) * wy
|
|
dw = paddle.slice(deltas, axes=[2], starts=[2], ends=[3]) * ww
|
|
dh = paddle.slice(deltas, axes=[2], starts=[3], ends=[4]) * wh
|
|
|
|
dw = paddle.clip(dw, -1.e10, np.log(1000. / 16))
|
|
dh = paddle.clip(dh, -1.e10, np.log(1000. / 16))
|
|
|
|
pred_ctr_x = dx
|
|
pred_ctr_y = dy
|
|
pred_w = paddle.exp(dw)
|
|
pred_h = paddle.exp(dh)
|
|
|
|
x1 = pred_ctr_x - 0.5 * pred_w
|
|
y1 = pred_ctr_y - 0.5 * pred_h
|
|
x2 = pred_ctr_x + 0.5 * pred_w
|
|
y2 = pred_ctr_y + 0.5 * pred_h
|
|
|
|
x1 = paddle.reshape(x1, shape=(-1, ))
|
|
y1 = paddle.reshape(y1, shape=(-1, ))
|
|
x2 = paddle.reshape(x2, shape=(-1, ))
|
|
y2 = paddle.reshape(y2, shape=(-1, ))
|
|
|
|
return paddle.concat([x1, y1, x2, y2])
|
|
|
|
def get_prediction(self, score, delta):
|
|
bbox_prob = F.softmax(score)
|
|
return delta, bbox_prob
|
|
|
|
def get_head(self, ):
|
|
return self.head
|
|
|
|
def get_assigned_targets(self, ):
|
|
return self.assigned_targets
|
|
|
|
def get_assigned_rois(self, ):
|
|
return self.assigned_rois
|
|
|