You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

284 lines
10 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import Normal, XavierUniform
from paddle.regularizer import L2Decay
from ppdet.core.workspace import register, create
from ppdet.modeling import ops
from .bbox_head import BBoxHead, TwoFCHead, XConvNormHead
from .roi_extractor import RoIAlign
from ..shape_spec import ShapeSpec
from ..bbox_utils import bbox2delta, delta2bbox, clip_bbox, nonempty_bbox
__all__ = ['CascadeTwoFCHead', 'CascadeXConvNormHead', 'CascadeHead']
@register
class CascadeTwoFCHead(nn.Layer):
__shared__ = ['num_cascade_stage']
"""
Cascade RCNN bbox head with Two fc layers to extract feature
Args:
in_channel (int): Input channel which can be derived by from_config
out_channel (int): Output channel
resolution (int): Resolution of input feature map, default 7
num_cascade_stage (int): The number of cascade stage, default 3
"""
def __init__(self,
in_channel=256,
out_channel=1024,
resolution=7,
num_cascade_stage=3):
super(CascadeTwoFCHead, self).__init__()
self.in_channel = in_channel
self.out_channel = out_channel
self.head_list = []
for stage in range(num_cascade_stage):
head_per_stage = self.add_sublayer(
str(stage), TwoFCHead(in_channel, out_channel, resolution))
self.head_list.append(head_per_stage)
@classmethod
def from_config(cls, cfg, input_shape):
s = input_shape
s = s[0] if isinstance(s, (list, tuple)) else s
return {'in_channel': s.channels}
@property
def out_shape(self):
return [ShapeSpec(channels=self.out_channel, )]
def forward(self, rois_feat, stage=0):
out = self.head_list[stage](rois_feat)
return out
@register
class CascadeXConvNormHead(nn.Layer):
__shared__ = ['norm_type', 'freeze_norm', 'num_cascade_stage']
"""
Cascade RCNN bbox head with serveral convolution layers
Args:
in_channel (int): Input channels which can be derived by from_config
num_convs (int): The number of conv layers
conv_dim (int): The number of channels for the conv layers
out_channel (int): Output channels
resolution (int): Resolution of input feature map
norm_type (string): Norm type, bn, gn, sync_bn are available,
default `gn`
freeze_norm (bool): Whether to freeze the norm
num_cascade_stage (int): The number of cascade stage, default 3
"""
def __init__(self,
in_channel=256,
num_convs=4,
conv_dim=256,
out_channel=1024,
resolution=7,
norm_type='gn',
freeze_norm=False,
num_cascade_stage=3):
super(CascadeXConvNormHead, self).__init__()
self.in_channel = in_channel
self.out_channel = out_channel
self.head_list = []
for stage in range(num_cascade_stage):
head_per_stage = self.add_sublayer(
str(stage),
XConvNormHead(
in_channel,
num_convs,
conv_dim,
out_channel,
resolution,
norm_type,
freeze_norm,
stage_name='stage{}_'.format(stage)))
self.head_list.append(head_per_stage)
@classmethod
def from_config(cls, cfg, input_shape):
s = input_shape
s = s[0] if isinstance(s, (list, tuple)) else s
return {'in_channel': s.channels}
@property
def out_shape(self):
return [ShapeSpec(channels=self.out_channel, )]
def forward(self, rois_feat, stage=0):
out = self.head_list[stage](rois_feat)
return out
@register
class CascadeHead(BBoxHead):
__shared__ = ['num_classes', 'num_cascade_stages']
__inject__ = ['bbox_assigner', 'bbox_loss']
"""
Cascade RCNN bbox head
Args:
head (nn.Layer): Extract feature in bbox head
in_channel (int): Input channel after RoI extractor
roi_extractor (object): The module of RoI Extractor
bbox_assigner (object): The module of Box Assigner, label and sample the
box.
num_classes (int): The number of classes
bbox_weight (List[List[float]]): The weight to get the decode box and the
length of weight is the number of cascade stage
num_cascade_stages (int): THe number of stage to refine the box
"""
def __init__(self,
head,
in_channel,
roi_extractor=RoIAlign().__dict__,
bbox_assigner='BboxAssigner',
num_classes=80,
bbox_weight=[[10., 10., 5., 5.], [20.0, 20.0, 10.0, 10.0],
[30.0, 30.0, 15.0, 15.0]],
num_cascade_stages=3,
bbox_loss=None):
nn.Layer.__init__(self, )
self.head = head
self.roi_extractor = roi_extractor
if isinstance(roi_extractor, dict):
self.roi_extractor = RoIAlign(**roi_extractor)
self.bbox_assigner = bbox_assigner
self.num_classes = num_classes
self.bbox_weight = bbox_weight
self.num_cascade_stages = num_cascade_stages
self.bbox_loss = bbox_loss
self.bbox_score_list = []
self.bbox_delta_list = []
for i in range(num_cascade_stages):
score_name = 'bbox_score_stage{}'.format(i)
delta_name = 'bbox_delta_stage{}'.format(i)
bbox_score = self.add_sublayer(
score_name,
nn.Linear(
in_channel,
self.num_classes + 1,
weight_attr=paddle.ParamAttr(initializer=Normal(
mean=0.0, std=0.01))))
bbox_delta = self.add_sublayer(
delta_name,
nn.Linear(
in_channel,
4,
weight_attr=paddle.ParamAttr(initializer=Normal(
mean=0.0, std=0.001))))
self.bbox_score_list.append(bbox_score)
self.bbox_delta_list.append(bbox_delta)
self.assigned_label = None
self.assigned_rois = None
def forward(self, body_feats=None, rois=None, rois_num=None, inputs=None):
"""
body_feats (list[Tensor]): Feature maps from backbone
rois (Tensor): RoIs generated from RPN module
rois_num (Tensor): The number of RoIs in each image
inputs (dict{Tensor}): The ground-truth of image
"""
targets = []
if self.training:
rois, rois_num, targets = self.bbox_assigner(rois, rois_num, inputs)
targets_list = [targets]
self.assigned_rois = (rois, rois_num)
self.assigned_targets = targets
pred_bbox = None
head_out_list = []
for i in range(self.num_cascade_stages):
if i > 0:
rois, rois_num = self._get_rois_from_boxes(pred_bbox,
inputs['im_shape'])
if self.training:
rois, rois_num, targets = self.bbox_assigner(
rois, rois_num, inputs, i, is_cascade=True)
targets_list.append(targets)
rois_feat = self.roi_extractor(body_feats, rois, rois_num)
bbox_feat = self.head(rois_feat, i)
scores = self.bbox_score_list[i](bbox_feat)
deltas = self.bbox_delta_list[i](bbox_feat)
head_out_list.append([scores, deltas, rois])
pred_bbox = self._get_pred_bbox(deltas, rois, self.bbox_weight[i])
if self.training:
loss = {}
for stage, value in enumerate(zip(head_out_list, targets_list)):
(scores, deltas, rois), targets = value
loss_stage = self.get_loss(scores, deltas, targets, rois,
self.bbox_weight[stage])
for k, v in loss_stage.items():
loss[k + "_stage{}".format(
stage)] = v / self.num_cascade_stages
return loss, bbox_feat
else:
scores, deltas, self.refined_rois = self.get_prediction(
head_out_list)
return (deltas, scores), self.head
def _get_rois_from_boxes(self, boxes, im_shape):
rois = []
for i, boxes_per_image in enumerate(boxes):
clip_box = clip_bbox(boxes_per_image, im_shape[i])
if self.training:
keep = nonempty_bbox(clip_box)
if keep.shape[0] == 0:
keep = paddle.zeros([1], dtype='int32')
clip_box = paddle.gather(clip_box, keep)
rois.append(clip_box)
rois_num = paddle.concat([paddle.shape(r)[0] for r in rois])
return rois, rois_num
def _get_pred_bbox(self, deltas, proposals, weights):
pred_proposals = paddle.concat(proposals) if len(
proposals) > 1 else proposals[0]
pred_bbox = delta2bbox(deltas, pred_proposals, weights)
pred_bbox = paddle.reshape(pred_bbox, [-1, deltas.shape[-1]])
num_prop = [p.shape[0] for p in proposals]
return pred_bbox.split(num_prop)
def get_prediction(self, head_out_list):
"""
head_out_list(List[Tensor]): scores, deltas, rois
"""
pred_list = []
scores_list = [F.softmax(head[0]) for head in head_out_list]
scores = paddle.add_n(scores_list) / self.num_cascade_stages
# Get deltas and rois from the last stage
_, deltas, rois = head_out_list[-1]
return scores, deltas, rois
def get_refined_rois(self, ):
return self.refined_rois