You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

250 lines
9.3 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import KaimingNormal
from paddle.regularizer import L2Decay
from ppdet.core.workspace import register, create
from ppdet.modeling import ops
from ppdet.modeling.layers import ConvNormLayer
from .roi_extractor import RoIAlign
@register
class MaskFeat(nn.Layer):
"""
Feature extraction in Mask head
Args:
in_channel (int): Input channels
out_channel (int): Output channels
num_convs (int): The number of conv layers, default 4
norm_type (string | None): Norm type, bn, gn, sync_bn are available,
default None
"""
def __init__(self,
in_channel=256,
out_channel=256,
num_convs=4,
norm_type=None):
super(MaskFeat, self).__init__()
self.num_convs = num_convs
self.in_channel = in_channel
self.out_channel = out_channel
self.norm_type = norm_type
fan_conv = out_channel * 3 * 3
fan_deconv = out_channel * 2 * 2
mask_conv = nn.Sequential()
if norm_type == 'gn':
for i in range(self.num_convs):
conv_name = 'mask_inter_feat_{}'.format(i + 1)
mask_conv.add_sublayer(
conv_name,
ConvNormLayer(
ch_in=in_channel if i == 0 else out_channel,
ch_out=out_channel,
filter_size=3,
stride=1,
norm_type=self.norm_type,
initializer=KaimingNormal(fan_in=fan_conv)))
mask_conv.add_sublayer(conv_name + 'act', nn.ReLU())
else:
for i in range(self.num_convs):
conv_name = 'mask_inter_feat_{}'.format(i + 1)
conv = nn.Conv2D(
in_channels=in_channel if i == 0 else out_channel,
out_channels=out_channel,
kernel_size=3,
padding=1,
weight_attr=paddle.ParamAttr(
initializer=KaimingNormal(fan_in=fan_conv)))
mask_conv.add_sublayer(conv_name, conv)
mask_conv.add_sublayer(conv_name + 'act', nn.ReLU())
mask_conv.add_sublayer(
'conv5_mask',
nn.Conv2DTranspose(
in_channels=self.in_channel,
out_channels=self.out_channel,
kernel_size=2,
stride=2,
weight_attr=paddle.ParamAttr(
initializer=KaimingNormal(fan_in=fan_deconv))))
mask_conv.add_sublayer('conv5_mask' + 'act', nn.ReLU())
self.upsample = mask_conv
@classmethod
def from_config(cls, cfg, input_shape):
if isinstance(input_shape, (list, tuple)):
input_shape = input_shape[0]
return {'in_channel': input_shape.channels, }
def out_channels(self):
return self.out_channel
def forward(self, feats):
return self.upsample(feats)
@register
class MaskHead(nn.Layer):
__shared__ = ['num_classes']
__inject__ = ['mask_assigner']
"""
RCNN mask head
Args:
head (nn.Layer): Extract feature in mask head
roi_extractor (object): The module of RoI Extractor
mask_assigner (object): The module of Mask Assigner,
label and sample the mask
num_classes (int): The number of classes
share_bbox_feat (bool): Whether to share the feature from bbox head,
default false
"""
def __init__(self,
head,
roi_extractor=RoIAlign().__dict__,
mask_assigner='MaskAssigner',
num_classes=80,
share_bbox_feat=False):
super(MaskHead, self).__init__()
self.num_classes = num_classes
self.roi_extractor = roi_extractor
if isinstance(roi_extractor, dict):
self.roi_extractor = RoIAlign(**roi_extractor)
self.head = head
self.in_channels = head.out_channels()
self.mask_assigner = mask_assigner
self.share_bbox_feat = share_bbox_feat
self.bbox_head = None
self.mask_fcn_logits = nn.Conv2D(
in_channels=self.in_channels,
out_channels=self.num_classes,
kernel_size=1,
weight_attr=paddle.ParamAttr(initializer=KaimingNormal(
fan_in=self.num_classes)))
@classmethod
def from_config(cls, cfg, input_shape):
roi_pooler = cfg['roi_extractor']
assert isinstance(roi_pooler, dict)
kwargs = RoIAlign.from_config(cfg, input_shape)
roi_pooler.update(kwargs)
kwargs = {'input_shape': input_shape}
head = create(cfg['head'], **kwargs)
return {
'roi_extractor': roi_pooler,
'head': head,
}
def get_loss(self, mask_logits, mask_label, mask_target, mask_weight):
mask_label = F.one_hot(mask_label, self.num_classes).unsqueeze([2, 3])
mask_label = paddle.expand_as(mask_label, mask_logits)
mask_label.stop_gradient = True
mask_pred = paddle.gather_nd(mask_logits, paddle.nonzero(mask_label))
shape = mask_logits.shape
mask_pred = paddle.reshape(mask_pred, [shape[0], shape[2], shape[3]])
mask_target = mask_target.cast('float32')
mask_weight = mask_weight.unsqueeze([1, 2])
loss_mask = F.binary_cross_entropy_with_logits(
mask_pred, mask_target, weight=mask_weight, reduction="mean")
return loss_mask
def forward_train(self, body_feats, rois, rois_num, inputs, targets,
bbox_feat):
"""
body_feats (list[Tensor]): Multi-level backbone features
rois (list[Tensor]): Proposals for each batch with shape [N, 4]
rois_num (Tensor): The number of proposals for each batch
inputs (dict): ground truth info
"""
tgt_labels, _, tgt_gt_inds = targets
rois, rois_num, tgt_classes, tgt_masks, mask_index, tgt_weights = self.mask_assigner(
rois, tgt_labels, tgt_gt_inds, inputs)
if self.share_bbox_feat:
rois_feat = paddle.gather(bbox_feat, mask_index)
else:
rois_feat = self.roi_extractor(body_feats, rois, rois_num)
mask_feat = self.head(rois_feat)
mask_logits = self.mask_fcn_logits(mask_feat)
loss_mask = self.get_loss(mask_logits, tgt_classes, tgt_masks,
tgt_weights)
return {'loss_mask': loss_mask}
def forward_test(self,
body_feats,
rois,
rois_num,
scale_factor,
feat_func=None):
"""
body_feats (list[Tensor]): Multi-level backbone features
rois (Tensor): Prediction from bbox head with shape [N, 6]
rois_num (Tensor): The number of prediction for each batch
scale_factor (Tensor): The scale factor from origin size to input size
"""
if rois.shape[0] == 0:
mask_out = paddle.full([1, 1, 1, 1], -1)
else:
bbox = [rois[:, 2:]]
labels = rois[:, 0].cast('int32')
rois_feat = self.roi_extractor(body_feats, bbox, rois_num)
if self.share_bbox_feat:
assert feat_func is not None
rois_feat = feat_func(rois_feat)
mask_feat = self.head(rois_feat)
mask_logit = self.mask_fcn_logits(mask_feat)
mask_num_class = mask_logit.shape[1]
if mask_num_class == 1:
mask_out = F.sigmoid(mask_logit)
else:
num_masks = mask_logit.shape[0]
mask_out = []
# TODO: need to optimize gather
for i in range(mask_logit.shape[0]):
pred_masks = paddle.unsqueeze(
mask_logit[i, :, :, :], axis=0)
mask = paddle.gather(pred_masks, labels[i], axis=1)
mask_out.append(mask)
mask_out = F.sigmoid(paddle.concat(mask_out))
return mask_out
def forward(self,
body_feats,
rois,
rois_num,
inputs,
targets=None,
bbox_feat=None,
feat_func=None):
if self.training:
return self.forward_train(body_feats, rois, rois_num, inputs,
targets, bbox_feat)
else:
im_scale = inputs['scale_factor']
return self.forward_test(body_feats, rois, rois_num, im_scale,
feat_func)