You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

872 lines
34 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import Normal, Constant
from ppdet.core.workspace import register
from ppdet.modeling import ops
from ppdet.modeling import bbox_utils
from ppdet.modeling.proposal_generator.target_layer import RBoxAssigner
import numpy as np
class S2ANetAnchorGenerator(object):
"""
S2ANetAnchorGenerator by np
"""
def __init__(self,
base_size=8,
scales=1.0,
ratios=1.0,
scale_major=True,
ctr=None):
self.base_size = base_size
self.scales = scales
self.ratios = ratios
self.scale_major = scale_major
self.ctr = ctr
self.base_anchors = self.gen_base_anchors()
@property
def num_base_anchors(self):
return self.base_anchors.shape[0]
def gen_base_anchors(self):
w = self.base_size
h = self.base_size
if self.ctr is None:
x_ctr = 0.5 * (w - 1)
y_ctr = 0.5 * (h - 1)
else:
x_ctr, y_ctr = self.ctr
h_ratios = np.sqrt(self.ratios)
w_ratios = 1 / h_ratios
if self.scale_major:
ws = (w * w_ratios[:] * self.scales[:]).reshape([-1])
hs = (h * h_ratios[:] * self.scales[:]).reshape([-1])
else:
ws = (w * self.scales[:] * w_ratios[:]).reshape([-1])
hs = (h * self.scales[:] * h_ratios[:]).reshape([-1])
# yapf: disable
base_anchors = np.stack(
[
x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1),
x_ctr + 0.5 * (ws - 1), y_ctr + 0.5 * (hs - 1)
],
axis=-1)
base_anchors = np.round(base_anchors)
# yapf: enable
return base_anchors
def _meshgrid(self, x, y, row_major=True):
xx, yy = np.meshgrid(x, y)
xx = xx.reshape(-1)
yy = yy.reshape(-1)
if row_major:
return xx, yy
else:
return yy, xx
def grid_anchors(self, featmap_size, stride=16):
# featmap_size*stride project it to original area
base_anchors = self.base_anchors
feat_h, feat_w = featmap_size
shift_x = np.arange(0, feat_w, 1, 'int32') * stride
shift_y = np.arange(0, feat_h, 1, 'int32') * stride
shift_xx, shift_yy = self._meshgrid(shift_x, shift_y)
shifts = np.stack([shift_xx, shift_yy, shift_xx, shift_yy], axis=-1)
# shifts = shifts.type_as(base_anchors)
# first feat_w elements correspond to the first row of shifts
# add A anchors (1, A, 4) to K shifts (K, 1, 4) to get
# shifted anchors (K, A, 4), reshape to (K*A, 4)
#all_anchors = base_anchors[:, :] + shifts[:, :]
all_anchors = base_anchors[None, :, :] + shifts[:, None, :]
# all_anchors = all_anchors.reshape([-1, 4])
# first A rows correspond to A anchors of (0, 0) in feature map,
# then (0, 1), (0, 2), ...
return all_anchors
def valid_flags(self, featmap_size, valid_size):
feat_h, feat_w = featmap_size
valid_h, valid_w = valid_size
assert valid_h <= feat_h and valid_w <= feat_w
valid_x = np.zeros([feat_w], dtype='uint8')
valid_y = np.zeros([feat_h], dtype='uint8')
valid_x[:valid_w] = 1
valid_y[:valid_h] = 1
valid_xx, valid_yy = self._meshgrid(valid_x, valid_y)
valid = valid_xx & valid_yy
valid = valid.reshape([-1])
# valid = valid[:, None].expand(
# [valid.size(0), self.num_base_anchors]).reshape([-1])
return valid
class AlignConv(nn.Layer):
def __init__(self, in_channels, out_channels, kernel_size=3, groups=1):
super(AlignConv, self).__init__()
self.kernel_size = kernel_size
self.align_conv = paddle.vision.ops.DeformConv2D(
in_channels,
out_channels,
kernel_size=self.kernel_size,
padding=(self.kernel_size - 1) // 2,
groups=groups,
weight_attr=ParamAttr(initializer=Normal(0, 0.01)),
bias_attr=None)
@paddle.no_grad()
def get_offset(self, anchors, featmap_size, stride):
"""
Args:
anchors: [M,5] xc,yc,w,h,angle
featmap_size: (feat_h, feat_w)
stride: 8
Returns:
"""
anchors = paddle.reshape(anchors, [-1, 5]) # (NA,5)
dtype = anchors.dtype
feat_h, feat_w = featmap_size
pad = (self.kernel_size - 1) // 2
idx = paddle.arange(-pad, pad + 1, dtype=dtype)
yy, xx = paddle.meshgrid(idx, idx)
xx = paddle.reshape(xx, [-1])
yy = paddle.reshape(yy, [-1])
# get sampling locations of default conv
xc = paddle.arange(0, feat_w, dtype=dtype)
yc = paddle.arange(0, feat_h, dtype=dtype)
yc, xc = paddle.meshgrid(yc, xc)
xc = paddle.reshape(xc, [-1, 1])
yc = paddle.reshape(yc, [-1, 1])
x_conv = xc + xx
y_conv = yc + yy
# get sampling locations of anchors
# x_ctr, y_ctr, w, h, a = np.unbind(anchors, dim=1)
x_ctr = anchors[:, 0]
y_ctr = anchors[:, 1]
w = anchors[:, 2]
h = anchors[:, 3]
a = anchors[:, 4]
x_ctr = paddle.reshape(x_ctr, [x_ctr.shape[0], 1])
y_ctr = paddle.reshape(y_ctr, [y_ctr.shape[0], 1])
w = paddle.reshape(w, [w.shape[0], 1])
h = paddle.reshape(h, [h.shape[0], 1])
a = paddle.reshape(a, [a.shape[0], 1])
x_ctr = x_ctr / stride
y_ctr = y_ctr / stride
w_s = w / stride
h_s = h / stride
cos, sin = paddle.cos(a), paddle.sin(a)
dw, dh = w_s / self.kernel_size, h_s / self.kernel_size
x, y = dw * xx, dh * yy
xr = cos * x - sin * y
yr = sin * x + cos * y
x_anchor, y_anchor = xr + x_ctr, yr + y_ctr
# get offset filed
offset_x = x_anchor - x_conv
offset_y = y_anchor - y_conv
# x, y in anchors is opposite in image coordinates,
# so we stack them with y, x other than x, y
offset = paddle.stack([offset_y, offset_x], axis=-1)
# NA,ks*ks*2
# [NA, ks, ks, 2] --> [NA, ks*ks*2]
offset = paddle.reshape(offset, [offset.shape[0], -1])
# [NA, ks*ks*2] --> [ks*ks*2, NA]
offset = paddle.transpose(offset, [1, 0])
# [NA, ks*ks*2] --> [1, ks*ks*2, H, W]
offset = paddle.reshape(offset, [1, -1, feat_h, feat_w])
return offset
def forward(self, x, refine_anchors, stride):
featmap_size = (x.shape[2], x.shape[3])
offset = self.get_offset(refine_anchors, featmap_size, stride)
x = F.relu(self.align_conv(x, offset))
return x
@register
class S2ANetHead(nn.Layer):
"""
S2Anet head
Args:
stacked_convs (int): number of stacked_convs
feat_in (int): input channels of feat
feat_out (int): output channels of feat
num_classes (int): num_classes
anchor_strides (list): stride of anchors
anchor_scales (list): scale of anchors
anchor_ratios (list): ratios of anchors
target_means (list): target_means
target_stds (list): target_stds
align_conv_type (str): align_conv_type ['Conv', 'AlignConv']
align_conv_size (int): kernel size of align_conv
use_sigmoid_cls (bool): use sigmoid_cls or not
reg_loss_weight (list): loss weight for regression
"""
__shared__ = ['num_classes']
__inject__ = ['anchor_assign']
def __init__(self,
stacked_convs=2,
feat_in=256,
feat_out=256,
num_classes=15,
anchor_strides=[8, 16, 32, 64, 128],
anchor_scales=[4],
anchor_ratios=[1.0],
target_means=(.0, .0, .0, .0, .0),
target_stds=(1.0, 1.0, 1.0, 1.0, 1.0),
align_conv_type='AlignConv',
align_conv_size=3,
use_sigmoid_cls=True,
anchor_assign=RBoxAssigner().__dict__,
reg_loss_weight=[1.0, 1.0, 1.0, 1.0, 1.0]):
super(S2ANetHead, self).__init__()
self.stacked_convs = stacked_convs
self.feat_in = feat_in
self.feat_out = feat_out
self.anchor_list = None
self.anchor_scales = anchor_scales
self.anchor_ratios = anchor_ratios
self.anchor_strides = anchor_strides
self.anchor_base_sizes = list(anchor_strides)
self.target_means = target_means
self.target_stds = target_stds
assert align_conv_type in ['AlignConv', 'Conv', 'DCN']
self.align_conv_type = align_conv_type
self.align_conv_size = align_conv_size
self.use_sigmoid_cls = use_sigmoid_cls
self.cls_out_channels = num_classes if self.use_sigmoid_cls else 1
self.sampling = False
self.anchor_assign = anchor_assign
self.reg_loss_weight = reg_loss_weight
self.s2anet_head_out = None
# anchor
self.anchor_generators = []
for anchor_base in self.anchor_base_sizes:
self.anchor_generators.append(
S2ANetAnchorGenerator(anchor_base, anchor_scales,
anchor_ratios))
self.fam_cls_convs = nn.Sequential()
self.fam_reg_convs = nn.Sequential()
for i in range(self.stacked_convs):
chan_in = self.feat_in if i == 0 else self.feat_out
self.fam_cls_convs.add_sublayer(
'fam_cls_conv_{}'.format(i),
nn.Conv2D(
in_channels=chan_in,
out_channels=self.feat_out,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=ParamAttr(initializer=Constant(0))))
self.fam_cls_convs.add_sublayer('fam_cls_conv_{}_act'.format(i),
nn.ReLU())
self.fam_reg_convs.add_sublayer(
'fam_reg_conv_{}'.format(i),
nn.Conv2D(
in_channels=chan_in,
out_channels=self.feat_out,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=ParamAttr(initializer=Constant(0))))
self.fam_reg_convs.add_sublayer('fam_reg_conv_{}_act'.format(i),
nn.ReLU())
self.fam_reg = nn.Conv2D(
self.feat_out,
5,
1,
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=ParamAttr(initializer=Constant(0)))
prior_prob = 0.01
bias_init = float(-np.log((1 - prior_prob) / prior_prob))
self.fam_cls = nn.Conv2D(
self.feat_out,
self.cls_out_channels,
1,
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=ParamAttr(initializer=Constant(bias_init)))
if self.align_conv_type == "AlignConv":
self.align_conv = AlignConv(self.feat_out, self.feat_out,
self.align_conv_size)
elif self.align_conv_type == "Conv":
self.align_conv = nn.Conv2D(
self.feat_out,
self.feat_out,
self.align_conv_size,
padding=(self.align_conv_size - 1) // 2,
bias_attr=ParamAttr(initializer=Constant(0)))
elif self.align_conv_type == "DCN":
self.align_conv_offset = nn.Conv2D(
self.feat_out,
2 * self.align_conv_size**2,
1,
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=ParamAttr(initializer=Constant(0)))
self.align_conv = paddle.vision.ops.DeformConv2D(
self.feat_out,
self.feat_out,
self.align_conv_size,
padding=(self.align_conv_size - 1) // 2,
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=False)
self.or_conv = nn.Conv2D(
self.feat_out,
self.feat_out,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=ParamAttr(initializer=Constant(0)))
# ODM
self.odm_cls_convs = nn.Sequential()
self.odm_reg_convs = nn.Sequential()
for i in range(self.stacked_convs):
ch_in = self.feat_out
# ch_in = int(self.feat_out / 8) if i == 0 else self.feat_out
self.odm_cls_convs.add_sublayer(
'odm_cls_conv_{}'.format(i),
nn.Conv2D(
in_channels=ch_in,
out_channels=self.feat_out,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=ParamAttr(initializer=Constant(0))))
self.odm_cls_convs.add_sublayer('odm_cls_conv_{}_act'.format(i),
nn.ReLU())
self.odm_reg_convs.add_sublayer(
'odm_reg_conv_{}'.format(i),
nn.Conv2D(
in_channels=self.feat_out,
out_channels=self.feat_out,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=ParamAttr(initializer=Constant(0))))
self.odm_reg_convs.add_sublayer('odm_reg_conv_{}_act'.format(i),
nn.ReLU())
self.odm_cls = nn.Conv2D(
self.feat_out,
self.cls_out_channels,
3,
padding=1,
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=ParamAttr(initializer=Constant(bias_init)))
self.odm_reg = nn.Conv2D(
self.feat_out,
5,
3,
padding=1,
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
bias_attr=ParamAttr(initializer=Constant(0)))
self.base_anchors = dict()
self.featmap_sizes = dict()
self.base_anchors = dict()
self.refine_anchor_list = []
def forward(self, feats):
fam_reg_branch_list = []
fam_cls_branch_list = []
odm_reg_branch_list = []
odm_cls_branch_list = []
self.featmap_sizes = dict()
self.base_anchors = dict()
self.refine_anchor_list = []
for i, feat in enumerate(feats):
fam_cls_feat = self.fam_cls_convs(feat)
fam_cls = self.fam_cls(fam_cls_feat)
# [N, CLS, H, W] --> [N, H, W, CLS]
fam_cls = fam_cls.transpose([0, 2, 3, 1])
fam_cls_reshape = paddle.reshape(
fam_cls, [fam_cls.shape[0], -1, self.cls_out_channels])
fam_cls_branch_list.append(fam_cls_reshape)
fam_reg_feat = self.fam_reg_convs(feat)
fam_reg = self.fam_reg(fam_reg_feat)
# [N, 5, H, W] --> [N, H, W, 5]
fam_reg = fam_reg.transpose([0, 2, 3, 1])
fam_reg_reshape = paddle.reshape(fam_reg, [fam_reg.shape[0], -1, 5])
fam_reg_branch_list.append(fam_reg_reshape)
# prepare anchor
featmap_size = feat.shape[-2:]
self.featmap_sizes[i] = featmap_size
init_anchors = self.anchor_generators[i].grid_anchors(
featmap_size, self.anchor_strides[i])
init_anchors = bbox_utils.rect2rbox(init_anchors)
self.base_anchors[(i, featmap_size[0])] = init_anchors
#fam_reg1 = fam_reg
#fam_reg1.stop_gradient = True
refine_anchor = bbox_utils.bbox_decode(
fam_reg.detach(), init_anchors, self.target_means,
self.target_stds)
self.refine_anchor_list.append(refine_anchor)
if self.align_conv_type == 'AlignConv':
align_feat = self.align_conv(feat,
refine_anchor.clone(),
self.anchor_strides[i])
elif self.align_conv_type == 'DCN':
align_offset = self.align_conv_offset(feat)
align_feat = self.align_conv(feat, align_offset)
elif self.align_conv_type == 'Conv':
align_feat = self.align_conv(feat)
or_feat = self.or_conv(align_feat)
odm_reg_feat = or_feat
odm_cls_feat = or_feat
odm_reg_feat = self.odm_reg_convs(odm_reg_feat)
odm_cls_feat = self.odm_cls_convs(odm_cls_feat)
odm_cls_score = self.odm_cls(odm_cls_feat)
# [N, CLS, H, W] --> [N, H, W, CLS]
odm_cls_score = odm_cls_score.transpose([0, 2, 3, 1])
odm_cls_score_reshape = paddle.reshape(
odm_cls_score,
[odm_cls_score.shape[0], -1, self.cls_out_channels])
odm_cls_branch_list.append(odm_cls_score_reshape)
odm_bbox_pred = self.odm_reg(odm_reg_feat)
# [N, 5, H, W] --> [N, H, W, 5]
odm_bbox_pred = odm_bbox_pred.transpose([0, 2, 3, 1])
odm_bbox_pred_reshape = paddle.reshape(
odm_bbox_pred, [odm_bbox_pred.shape[0], -1, 5])
odm_reg_branch_list.append(odm_bbox_pred_reshape)
self.s2anet_head_out = (fam_cls_branch_list, fam_reg_branch_list,
odm_cls_branch_list, odm_reg_branch_list)
return self.s2anet_head_out
def get_prediction(self, nms_pre):
refine_anchors = self.refine_anchor_list
fam_cls_branch_list, fam_reg_branch_list, odm_cls_branch_list, odm_reg_branch_list = self.s2anet_head_out
pred_scores, pred_bboxes = self.get_bboxes(
odm_cls_branch_list,
odm_reg_branch_list,
refine_anchors,
nms_pre,
cls_out_channels=self.cls_out_channels,
use_sigmoid_cls=self.use_sigmoid_cls)
return pred_scores, pred_bboxes
def smooth_l1_loss(self, pred, label, delta=1.0 / 9.0):
"""
Args:
pred: pred score
label: label
delta: delta
Returns: loss
"""
assert pred.shape == label.shape and label.numel() > 0
assert delta > 0
diff = paddle.abs(pred - label)
loss = paddle.where(diff < delta, 0.5 * diff * diff / delta,
diff - 0.5 * delta)
return loss
def get_fam_loss(self, fam_target, s2anet_head_out):
(labels, label_weights, bbox_targets, bbox_weights, pos_inds,
neg_inds) = fam_target
fam_cls_branch_list, fam_reg_branch_list, odm_cls_branch_list, odm_reg_branch_list = s2anet_head_out
fam_cls_losses = []
fam_bbox_losses = []
st_idx = 0
featmap_sizes = [self.featmap_sizes[e] for e in self.featmap_sizes]
num_total_samples = len(pos_inds) + len(
neg_inds) if self.sampling else len(pos_inds)
num_total_samples = max(1, num_total_samples)
for idx, feat_size in enumerate(featmap_sizes):
feat_anchor_num = feat_size[0] * feat_size[1]
# step1: get data
feat_labels = labels[st_idx:st_idx + feat_anchor_num]
feat_label_weights = label_weights[st_idx:st_idx + feat_anchor_num]
feat_bbox_targets = bbox_targets[st_idx:st_idx + feat_anchor_num, :]
feat_bbox_weights = bbox_weights[st_idx:st_idx + feat_anchor_num, :]
st_idx += feat_anchor_num
# step2: calc cls loss
feat_labels = feat_labels.reshape(-1)
feat_label_weights = feat_label_weights.reshape(-1)
fam_cls_score = fam_cls_branch_list[idx]
fam_cls_score = paddle.squeeze(fam_cls_score, axis=0)
fam_cls_score1 = fam_cls_score
# gt_classes 0~14(data), feat_labels 0~14, sigmoid_focal_loss need class>=1
feat_labels = paddle.to_tensor(feat_labels)
feat_labels_one_hot = paddle.nn.functional.one_hot(
feat_labels, self.cls_out_channels + 1)
feat_labels_one_hot = feat_labels_one_hot[:, 1:]
feat_labels_one_hot.stop_gradient = True
num_total_samples = paddle.to_tensor(
num_total_samples, dtype='float32', stop_gradient=True)
fam_cls = F.sigmoid_focal_loss(
fam_cls_score1,
feat_labels_one_hot,
normalizer=num_total_samples,
reduction='none')
feat_label_weights = feat_label_weights.reshape(
feat_label_weights.shape[0], 1)
feat_label_weights = np.repeat(
feat_label_weights, self.cls_out_channels, axis=1)
feat_label_weights = paddle.to_tensor(
feat_label_weights, stop_gradient=True)
fam_cls = fam_cls * feat_label_weights
fam_cls_total = paddle.sum(fam_cls)
fam_cls_losses.append(fam_cls_total)
# step3: regression loss
fam_bbox_pred = fam_reg_branch_list[idx]
feat_bbox_targets = paddle.to_tensor(
feat_bbox_targets, dtype='float32', stop_gradient=True)
feat_bbox_targets = paddle.reshape(feat_bbox_targets, [-1, 5])
fam_bbox_pred = fam_reg_branch_list[idx]
fam_bbox_pred = paddle.squeeze(fam_bbox_pred, axis=0)
fam_bbox_pred = paddle.reshape(fam_bbox_pred, [-1, 5])
fam_bbox = self.smooth_l1_loss(fam_bbox_pred, feat_bbox_targets)
loss_weight = paddle.to_tensor(
self.reg_loss_weight, dtype='float32', stop_gradient=True)
fam_bbox = paddle.multiply(fam_bbox, loss_weight)
feat_bbox_weights = paddle.to_tensor(
feat_bbox_weights, stop_gradient=True)
fam_bbox = fam_bbox * feat_bbox_weights
fam_bbox_total = paddle.sum(fam_bbox) / num_total_samples
fam_bbox_losses.append(fam_bbox_total)
fam_cls_loss = paddle.add_n(fam_cls_losses)
fam_cls_loss = fam_cls_loss * 2.0
fam_reg_loss = paddle.add_n(fam_bbox_losses)
return fam_cls_loss, fam_reg_loss
def get_odm_loss(self, odm_target, s2anet_head_out):
(labels, label_weights, bbox_targets, bbox_weights, pos_inds,
neg_inds) = odm_target
fam_cls_branch_list, fam_reg_branch_list, odm_cls_branch_list, odm_reg_branch_list = s2anet_head_out
odm_cls_losses = []
odm_bbox_losses = []
st_idx = 0
featmap_sizes = [self.featmap_sizes[e] for e in self.featmap_sizes]
num_total_samples = len(pos_inds) + len(
neg_inds) if self.sampling else len(pos_inds)
num_total_samples = max(1, num_total_samples)
for idx, feat_size in enumerate(featmap_sizes):
feat_anchor_num = feat_size[0] * feat_size[1]
# step1: get data
feat_labels = labels[st_idx:st_idx + feat_anchor_num]
feat_label_weights = label_weights[st_idx:st_idx + feat_anchor_num]
feat_bbox_targets = bbox_targets[st_idx:st_idx + feat_anchor_num, :]
feat_bbox_weights = bbox_weights[st_idx:st_idx + feat_anchor_num, :]
st_idx += feat_anchor_num
# step2: calc cls loss
feat_labels = feat_labels.reshape(-1)
feat_label_weights = feat_label_weights.reshape(-1)
odm_cls_score = odm_cls_branch_list[idx]
odm_cls_score = paddle.squeeze(odm_cls_score, axis=0)
odm_cls_score1 = odm_cls_score
# gt_classes 0~14(data), feat_labels 0~14, sigmoid_focal_loss need class>=1
feat_labels = paddle.to_tensor(feat_labels)
feat_labels_one_hot = paddle.nn.functional.one_hot(
feat_labels, self.cls_out_channels + 1)
feat_labels_one_hot = feat_labels_one_hot[:, 1:]
feat_labels_one_hot.stop_gradient = True
num_total_samples = paddle.to_tensor(
num_total_samples, dtype='float32', stop_gradient=True)
odm_cls = F.sigmoid_focal_loss(
odm_cls_score1,
feat_labels_one_hot,
normalizer=num_total_samples,
reduction='none')
feat_label_weights = feat_label_weights.reshape(
feat_label_weights.shape[0], 1)
feat_label_weights = np.repeat(
feat_label_weights, self.cls_out_channels, axis=1)
feat_label_weights = paddle.to_tensor(feat_label_weights)
feat_label_weights.stop_gradient = True
odm_cls = odm_cls * feat_label_weights
odm_cls_total = paddle.sum(odm_cls)
odm_cls_losses.append(odm_cls_total)
# # step3: regression loss
feat_bbox_targets = paddle.to_tensor(
feat_bbox_targets, dtype='float32')
feat_bbox_targets = paddle.reshape(feat_bbox_targets, [-1, 5])
feat_bbox_targets.stop_gradient = True
odm_bbox_pred = odm_reg_branch_list[idx]
odm_bbox_pred = paddle.squeeze(odm_bbox_pred, axis=0)
odm_bbox_pred = paddle.reshape(odm_bbox_pred, [-1, 5])
odm_bbox = self.smooth_l1_loss(odm_bbox_pred, feat_bbox_targets)
loss_weight = paddle.to_tensor(
self.reg_loss_weight, dtype='float32', stop_gradient=True)
odm_bbox = paddle.multiply(odm_bbox, loss_weight)
feat_bbox_weights = paddle.to_tensor(
feat_bbox_weights, stop_gradient=True)
odm_bbox = odm_bbox * feat_bbox_weights
odm_bbox_total = paddle.sum(odm_bbox) / num_total_samples
odm_bbox_losses.append(odm_bbox_total)
odm_cls_loss = paddle.add_n(odm_cls_losses)
odm_cls_loss = odm_cls_loss * 2.0
odm_reg_loss = paddle.add_n(odm_bbox_losses)
return odm_cls_loss, odm_reg_loss
def get_loss(self, inputs):
# inputs: im_id image im_shape scale_factor gt_bbox gt_class is_crowd
# compute loss
fam_cls_loss_lst = []
fam_reg_loss_lst = []
odm_cls_loss_lst = []
odm_reg_loss_lst = []
im_shape = inputs['im_shape']
for im_id in range(im_shape.shape[0]):
np_im_shape = inputs['im_shape'][im_id].numpy()
np_scale_factor = inputs['scale_factor'][im_id].numpy()
# data_format: (xc, yc, w, h, theta)
gt_bboxes = inputs['gt_rbox'][im_id].numpy()
gt_labels = inputs['gt_class'][im_id].numpy()
is_crowd = inputs['is_crowd'][im_id].numpy()
gt_labels = gt_labels + 1
# featmap_sizes
featmap_sizes = [self.featmap_sizes[e] for e in self.featmap_sizes]
anchors_list, valid_flag_list = self.get_init_anchors(featmap_sizes,
np_im_shape)
anchors_list_all = []
for ii, anchor in enumerate(anchors_list):
anchor = anchor.reshape(-1, 4)
anchor = bbox_utils.rect2rbox(anchor)
anchors_list_all.extend(anchor)
anchors_list_all = np.array(anchors_list_all)
# get im_feat
fam_cls_feats_list = [e[im_id] for e in self.s2anet_head_out[0]]
fam_reg_feats_list = [e[im_id] for e in self.s2anet_head_out[1]]
odm_cls_feats_list = [e[im_id] for e in self.s2anet_head_out[2]]
odm_reg_feats_list = [e[im_id] for e in self.s2anet_head_out[3]]
im_s2anet_head_out = (fam_cls_feats_list, fam_reg_feats_list,
odm_cls_feats_list, odm_reg_feats_list)
# FAM
im_fam_target = self.anchor_assign(anchors_list_all, gt_bboxes,
gt_labels, is_crowd)
if im_fam_target is not None:
im_fam_cls_loss, im_fam_reg_loss = self.get_fam_loss(
im_fam_target, im_s2anet_head_out)
fam_cls_loss_lst.append(im_fam_cls_loss)
fam_reg_loss_lst.append(im_fam_reg_loss)
# ODM
refine_anchors_list, valid_flag_list = self.get_refine_anchors(
featmap_sizes, image_shape=np_im_shape)
refine_anchors_list = np.array(refine_anchors_list)
im_odm_target = self.anchor_assign(refine_anchors_list, gt_bboxes,
gt_labels, is_crowd)
if im_odm_target is not None:
im_odm_cls_loss, im_odm_reg_loss = self.get_odm_loss(
im_odm_target, im_s2anet_head_out)
odm_cls_loss_lst.append(im_odm_cls_loss)
odm_reg_loss_lst.append(im_odm_reg_loss)
fam_cls_loss = paddle.add_n(fam_cls_loss_lst)
fam_reg_loss = paddle.add_n(fam_reg_loss_lst)
odm_cls_loss = paddle.add_n(odm_cls_loss_lst)
odm_reg_loss = paddle.add_n(odm_reg_loss_lst)
return {
'fam_cls_loss': fam_cls_loss,
'fam_reg_loss': fam_reg_loss,
'odm_cls_loss': odm_cls_loss,
'odm_reg_loss': odm_reg_loss
}
def get_init_anchors(self, featmap_sizes, image_shape):
"""Get anchors according to feature map sizes.
Args:
featmap_sizes (list[tuple]): Multi-level feature map sizes.
image_shape (list[dict]): Image meta info.
Returns:
tuple: anchors of each image, valid flags of each image
"""
num_levels = len(featmap_sizes)
# since feature map sizes of all images are the same, we only compute
# anchors for one time
anchor_list = []
for i in range(num_levels):
anchors = self.anchor_generators[i].grid_anchors(
featmap_sizes[i], self.anchor_strides[i])
anchor_list.append(anchors)
# for each image, we compute valid flags of multi level anchors
valid_flag_list = []
for i in range(num_levels):
anchor_stride = self.anchor_strides[i]
feat_h, feat_w = featmap_sizes[i]
h, w = image_shape
valid_feat_h = min(int(np.ceil(h / anchor_stride)), feat_h)
valid_feat_w = min(int(np.ceil(w / anchor_stride)), feat_w)
flags = self.anchor_generators[i].valid_flags(
(feat_h, feat_w), (valid_feat_h, valid_feat_w))
valid_flag_list.append(flags)
return anchor_list, valid_flag_list
def get_refine_anchors(self, featmap_sizes, image_shape):
num_levels = len(featmap_sizes)
refine_anchors_list = []
for i in range(num_levels):
refine_anchor = self.refine_anchor_list[i]
refine_anchor = paddle.squeeze(refine_anchor, axis=0)
refine_anchor = refine_anchor.numpy()
refine_anchor = np.reshape(refine_anchor,
[-1, refine_anchor.shape[-1]])
refine_anchors_list.extend(refine_anchor)
# for each image, we compute valid flags of multi level anchors
valid_flag_list = []
for i in range(num_levels):
anchor_stride = self.anchor_strides[i]
feat_h, feat_w = featmap_sizes[i]
h, w = image_shape
valid_feat_h = min(int(np.ceil(h / anchor_stride)), feat_h)
valid_feat_w = min(int(np.ceil(w / anchor_stride)), feat_w)
flags = self.anchor_generators[i].valid_flags(
(feat_h, feat_w), (valid_feat_h, valid_feat_w))
valid_flag_list.append(flags)
return refine_anchors_list, valid_flag_list
def get_bboxes(self, cls_score_list, bbox_pred_list, mlvl_anchors, nms_pre,
cls_out_channels, use_sigmoid_cls):
assert len(cls_score_list) == len(bbox_pred_list) == len(mlvl_anchors)
mlvl_bboxes = []
mlvl_scores = []
idx = 0
for cls_score, bbox_pred, anchors in zip(cls_score_list, bbox_pred_list,
mlvl_anchors):
cls_score = paddle.reshape(cls_score, [-1, cls_out_channels])
if use_sigmoid_cls:
scores = F.sigmoid(cls_score)
else:
scores = F.softmax(cls_score, axis=-1)
# bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 5)
bbox_pred = paddle.transpose(bbox_pred, [1, 2, 0])
bbox_pred = paddle.reshape(bbox_pred, [-1, 5])
anchors = paddle.reshape(anchors, [-1, 5])
if nms_pre > 0 and scores.shape[0] > nms_pre:
# Get maximum scores for foreground classes.
if use_sigmoid_cls:
max_scores = paddle.max(scores, axis=1)
else:
max_scores = paddle.max(scores[:, 1:], axis=1)
topk_val, topk_inds = paddle.topk(max_scores, nms_pre)
anchors = paddle.gather(anchors, topk_inds)
bbox_pred = paddle.gather(bbox_pred, topk_inds)
scores = paddle.gather(scores, topk_inds)
target_means = (.0, .0, .0, .0, .0)
target_stds = (1.0, 1.0, 1.0, 1.0, 1.0)
bboxes = bbox_utils.delta2rbox(anchors, bbox_pred, target_means,
target_stds)
mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores)
idx += 1
mlvl_bboxes = paddle.concat(mlvl_bboxes, axis=0)
mlvl_scores = paddle.concat(mlvl_scores)
if use_sigmoid_cls:
# Add a dummy background class to the front when using sigmoid
padding = paddle.zeros(
[mlvl_scores.shape[0], 1], dtype=mlvl_scores.dtype)
mlvl_scores = paddle.concat([padding, mlvl_scores], axis=1)
return mlvl_scores, mlvl_bboxes