You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
123 lines
4.5 KiB
123 lines
4.5 KiB
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
from paddle import ParamAttr
|
|
from paddle.regularizer import L2Decay
|
|
from ppdet.core.workspace import register
|
|
|
|
|
|
def _de_sigmoid(x, eps=1e-7):
|
|
x = paddle.clip(x, eps, 1. / eps)
|
|
x = paddle.clip(1. / x - 1., eps, 1. / eps)
|
|
x = -paddle.log(x)
|
|
return x
|
|
|
|
|
|
@register
|
|
class YOLOv3Head(nn.Layer):
|
|
__shared__ = ['num_classes', 'data_format']
|
|
__inject__ = ['loss']
|
|
|
|
def __init__(self,
|
|
in_channels=[1024, 512, 256],
|
|
anchors=[[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
|
|
[59, 119], [116, 90], [156, 198], [373, 326]],
|
|
anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]],
|
|
num_classes=80,
|
|
loss='YOLOv3Loss',
|
|
iou_aware=False,
|
|
iou_aware_factor=0.4,
|
|
data_format='NCHW'):
|
|
"""
|
|
Head for YOLOv3 network
|
|
|
|
Args:
|
|
num_classes (int): number of foreground classes
|
|
anchors (list): anchors
|
|
anchor_masks (list): anchor masks
|
|
loss (object): YOLOv3Loss instance
|
|
iou_aware (bool): whether to use iou_aware
|
|
iou_aware_factor (float): iou aware factor
|
|
data_format (str): data format, NCHW or NHWC
|
|
"""
|
|
super(YOLOv3Head, self).__init__()
|
|
assert len(in_channels) > 0, "in_channels length should > 0"
|
|
self.in_channels = in_channels
|
|
self.num_classes = num_classes
|
|
self.loss = loss
|
|
|
|
self.iou_aware = iou_aware
|
|
self.iou_aware_factor = iou_aware_factor
|
|
|
|
self.parse_anchor(anchors, anchor_masks)
|
|
self.num_outputs = len(self.anchors)
|
|
self.data_format = data_format
|
|
|
|
self.yolo_outputs = []
|
|
for i in range(len(self.anchors)):
|
|
|
|
if self.iou_aware:
|
|
num_filters = len(self.anchors[i]) * (self.num_classes + 6)
|
|
else:
|
|
num_filters = len(self.anchors[i]) * (self.num_classes + 5)
|
|
name = 'yolo_output.{}'.format(i)
|
|
conv = nn.Conv2D(
|
|
in_channels=self.in_channels[i],
|
|
out_channels=num_filters,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
data_format=data_format,
|
|
bias_attr=ParamAttr(regularizer=L2Decay(0.)))
|
|
yolo_output = self.add_sublayer(name, conv)
|
|
self.yolo_outputs.append(yolo_output)
|
|
|
|
def parse_anchor(self, anchors, anchor_masks):
|
|
self.anchors = [[anchors[i] for i in mask] for mask in anchor_masks]
|
|
self.mask_anchors = []
|
|
anchor_num = len(anchors)
|
|
for masks in anchor_masks:
|
|
self.mask_anchors.append([])
|
|
for mask in masks:
|
|
assert mask < anchor_num, "anchor mask index overflow"
|
|
self.mask_anchors[-1].extend(anchors[mask])
|
|
|
|
def forward(self, feats, targets=None):
|
|
assert len(feats) == len(self.anchors)
|
|
yolo_outputs = []
|
|
for i, feat in enumerate(feats):
|
|
yolo_output = self.yolo_outputs[i](feat)
|
|
if self.data_format == 'NHWC':
|
|
yolo_output = paddle.transpose(yolo_output, [0, 3, 1, 2])
|
|
yolo_outputs.append(yolo_output)
|
|
|
|
if self.training:
|
|
return self.loss(yolo_outputs, targets, self.anchors)
|
|
else:
|
|
if self.iou_aware:
|
|
y = []
|
|
for i, out in enumerate(yolo_outputs):
|
|
na = len(self.anchors[i])
|
|
ioup, x = out[:, 0:na, :, :], out[:, na:, :, :]
|
|
b, c, h, w = x.shape
|
|
no = c // na
|
|
x = x.reshape((b, na, no, h * w))
|
|
ioup = ioup.reshape((b, na, 1, h * w))
|
|
obj = x[:, :, 4:5, :]
|
|
ioup = F.sigmoid(ioup)
|
|
obj = F.sigmoid(obj)
|
|
obj_t = (obj**(1 - self.iou_aware_factor)) * (
|
|
ioup**self.iou_aware_factor)
|
|
obj_t = _de_sigmoid(obj_t)
|
|
loc_t = x[:, :, :4, :]
|
|
cls_t = x[:, :, 5:, :]
|
|
y_t = paddle.concat([loc_t, obj_t, cls_t], axis=2)
|
|
y_t = y_t.reshape((b, c, h, w))
|
|
y.append(y_t)
|
|
return y
|
|
else:
|
|
return yolo_outputs
|
|
|
|
@classmethod
|
|
def from_config(cls, cfg, input_shape):
|
|
return {'in_channels': [i.channels for i in input_shape], }
|
|
|