You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

851 lines
31 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os, sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 4)))
if parent_path not in sys.path:
sys.path.append(parent_path)
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.framework import Program, program_guard
from paddle.fluid.dygraph import base
import ppdet.modeling.ops as ops
from ppdet.modeling.tests.test_base import LayerTest
def make_rois(h, w, rois_num, output_size):
rois = np.zeros((0, 4)).astype('float32')
for roi_num in rois_num:
roi = np.zeros((roi_num, 4)).astype('float32')
roi[:, 0] = np.random.randint(0, h - output_size[0], size=roi_num)
roi[:, 1] = np.random.randint(0, w - output_size[1], size=roi_num)
roi[:, 2] = np.random.randint(roi[:, 0] + output_size[0], h)
roi[:, 3] = np.random.randint(roi[:, 1] + output_size[1], w)
rois = np.vstack((rois, roi))
return rois
def softmax(x):
# clip to shiftx, otherwise, when calc loss with
# log(exp(shiftx)), may get log(0)=INF
shiftx = (x - np.max(x)).clip(-64.)
exps = np.exp(shiftx)
return exps / np.sum(exps)
class TestCollectFpnProposals(LayerTest):
def test_collect_fpn_proposals(self):
multi_bboxes_np = []
multi_scores_np = []
rois_num_per_level_np = []
for i in range(4):
bboxes_np = np.random.rand(5, 4).astype('float32')
scores_np = np.random.rand(5, 1).astype('float32')
rois_num = np.array([2, 3]).astype('int32')
multi_bboxes_np.append(bboxes_np)
multi_scores_np.append(scores_np)
rois_num_per_level_np.append(rois_num)
with self.static_graph():
multi_bboxes = []
multi_scores = []
rois_num_per_level = []
for i in range(4):
bboxes = paddle.static.data(
name='rois' + str(i),
shape=[5, 4],
dtype='float32',
lod_level=1)
scores = paddle.static.data(
name='scores' + str(i),
shape=[5, 1],
dtype='float32',
lod_level=1)
rois_num = paddle.static.data(
name='rois_num' + str(i), shape=[None], dtype='int32')
multi_bboxes.append(bboxes)
multi_scores.append(scores)
rois_num_per_level.append(rois_num)
fpn_rois, rois_num = ops.collect_fpn_proposals(
multi_bboxes,
multi_scores,
2,
5,
10,
rois_num_per_level=rois_num_per_level)
feed = {}
for i in range(4):
feed['rois' + str(i)] = multi_bboxes_np[i]
feed['scores' + str(i)] = multi_scores_np[i]
feed['rois_num' + str(i)] = rois_num_per_level_np[i]
fpn_rois_stat, rois_num_stat = self.get_static_graph_result(
feed=feed, fetch_list=[fpn_rois, rois_num], with_lod=True)
fpn_rois_stat = np.array(fpn_rois_stat)
rois_num_stat = np.array(rois_num_stat)
with self.dynamic_graph():
multi_bboxes_dy = []
multi_scores_dy = []
rois_num_per_level_dy = []
for i in range(4):
bboxes_dy = base.to_variable(multi_bboxes_np[i])
scores_dy = base.to_variable(multi_scores_np[i])
rois_num_dy = base.to_variable(rois_num_per_level_np[i])
multi_bboxes_dy.append(bboxes_dy)
multi_scores_dy.append(scores_dy)
rois_num_per_level_dy.append(rois_num_dy)
fpn_rois_dy, rois_num_dy = ops.collect_fpn_proposals(
multi_bboxes_dy,
multi_scores_dy,
2,
5,
10,
rois_num_per_level=rois_num_per_level_dy)
fpn_rois_dy = fpn_rois_dy.numpy()
rois_num_dy = rois_num_dy.numpy()
self.assertTrue(np.array_equal(fpn_rois_stat, fpn_rois_dy))
self.assertTrue(np.array_equal(rois_num_stat, rois_num_dy))
def test_collect_fpn_proposals_error(self):
def generate_input(bbox_type, score_type, name):
multi_bboxes = []
multi_scores = []
for i in range(4):
bboxes = paddle.static.data(
name='rois' + name + str(i),
shape=[10, 4],
dtype=bbox_type,
lod_level=1)
scores = paddle.static.data(
name='scores' + name + str(i),
shape=[10, 1],
dtype=score_type,
lod_level=1)
multi_bboxes.append(bboxes)
multi_scores.append(scores)
return multi_bboxes, multi_scores
with self.static_graph():
bbox1 = paddle.static.data(
name='rois', shape=[5, 10, 4], dtype='float32', lod_level=1)
score1 = paddle.static.data(
name='scores', shape=[5, 10, 1], dtype='float32', lod_level=1)
bbox2, score2 = generate_input('int32', 'float32', '2')
self.assertRaises(
TypeError,
ops.collect_fpn_proposals,
multi_rois=bbox1,
multi_scores=score1,
min_level=2,
max_level=5,
post_nms_top_n=2000)
self.assertRaises(
TypeError,
ops.collect_fpn_proposals,
multi_rois=bbox2,
multi_scores=score2,
min_level=2,
max_level=5,
post_nms_top_n=2000)
class TestDistributeFpnProposals(LayerTest):
def test_distribute_fpn_proposals(self):
rois_np = np.random.rand(10, 4).astype('float32')
rois_num_np = np.array([4, 6]).astype('int32')
with self.static_graph():
rois = paddle.static.data(
name='rois', shape=[10, 4], dtype='float32')
rois_num = paddle.static.data(
name='rois_num', shape=[None], dtype='int32')
multi_rois, restore_ind, rois_num_per_level = ops.distribute_fpn_proposals(
fpn_rois=rois,
min_level=2,
max_level=5,
refer_level=4,
refer_scale=224,
rois_num=rois_num)
fetch_list = multi_rois + [restore_ind] + rois_num_per_level
output_stat = self.get_static_graph_result(
feed={'rois': rois_np,
'rois_num': rois_num_np},
fetch_list=fetch_list,
with_lod=True)
output_stat_np = []
for output in output_stat:
output_np = np.array(output)
if len(output_np) > 0:
output_stat_np.append(output_np)
with self.dynamic_graph():
rois_dy = base.to_variable(rois_np)
rois_num_dy = base.to_variable(rois_num_np)
multi_rois_dy, restore_ind_dy, rois_num_per_level_dy = ops.distribute_fpn_proposals(
fpn_rois=rois_dy,
min_level=2,
max_level=5,
refer_level=4,
refer_scale=224,
rois_num=rois_num_dy)
output_dy = multi_rois_dy + [restore_ind_dy] + rois_num_per_level_dy
output_dy_np = []
for output in output_dy:
output_np = output.numpy()
if len(output_np) > 0:
output_dy_np.append(output_np)
for res_stat, res_dy in zip(output_stat_np, output_dy_np):
self.assertTrue(np.array_equal(res_stat, res_dy))
def test_distribute_fpn_proposals_error(self):
with self.static_graph():
fpn_rois = paddle.static.data(
name='data_error', shape=[10, 4], dtype='int32', lod_level=1)
self.assertRaises(
TypeError,
ops.distribute_fpn_proposals,
fpn_rois=fpn_rois,
min_level=2,
max_level=5,
refer_level=4,
refer_scale=224)
class TestROIAlign(LayerTest):
def test_roi_align(self):
b, c, h, w = 2, 12, 20, 20
inputs_np = np.random.rand(b, c, h, w).astype('float32')
rois_num = [4, 6]
output_size = (7, 7)
rois_np = make_rois(h, w, rois_num, output_size)
rois_num_np = np.array(rois_num).astype('int32')
with self.static_graph():
inputs = paddle.static.data(
name='inputs', shape=[b, c, h, w], dtype='float32')
rois = paddle.static.data(
name='rois', shape=[10, 4], dtype='float32')
rois_num = paddle.static.data(
name='rois_num', shape=[None], dtype='int32')
output = ops.roi_align(
input=inputs,
rois=rois,
output_size=output_size,
rois_num=rois_num)
output_np, = self.get_static_graph_result(
feed={
'inputs': inputs_np,
'rois': rois_np,
'rois_num': rois_num_np
},
fetch_list=output,
with_lod=False)
with self.dynamic_graph():
inputs_dy = base.to_variable(inputs_np)
rois_dy = base.to_variable(rois_np)
rois_num_dy = base.to_variable(rois_num_np)
output_dy = ops.roi_align(
input=inputs_dy,
rois=rois_dy,
output_size=output_size,
rois_num=rois_num_dy)
output_dy_np = output_dy.numpy()
self.assertTrue(np.array_equal(output_np, output_dy_np))
def test_roi_align_error(self):
with self.static_graph():
inputs = paddle.static.data(
name='inputs', shape=[2, 12, 20, 20], dtype='float32')
rois = paddle.static.data(
name='data_error', shape=[10, 4], dtype='int32', lod_level=1)
self.assertRaises(
TypeError,
ops.roi_align,
input=inputs,
rois=rois,
output_size=(7, 7))
class TestROIPool(LayerTest):
def test_roi_pool(self):
b, c, h, w = 2, 12, 20, 20
inputs_np = np.random.rand(b, c, h, w).astype('float32')
rois_num = [4, 6]
output_size = (7, 7)
rois_np = make_rois(h, w, rois_num, output_size)
rois_num_np = np.array(rois_num).astype('int32')
with self.static_graph():
inputs = paddle.static.data(
name='inputs', shape=[b, c, h, w], dtype='float32')
rois = paddle.static.data(
name='rois', shape=[10, 4], dtype='float32')
rois_num = paddle.static.data(
name='rois_num', shape=[None], dtype='int32')
output, _ = ops.roi_pool(
input=inputs,
rois=rois,
output_size=output_size,
rois_num=rois_num)
output_np, = self.get_static_graph_result(
feed={
'inputs': inputs_np,
'rois': rois_np,
'rois_num': rois_num_np
},
fetch_list=[output],
with_lod=False)
with self.dynamic_graph():
inputs_dy = base.to_variable(inputs_np)
rois_dy = base.to_variable(rois_np)
rois_num_dy = base.to_variable(rois_num_np)
output_dy, _ = ops.roi_pool(
input=inputs_dy,
rois=rois_dy,
output_size=output_size,
rois_num=rois_num_dy)
output_dy_np = output_dy.numpy()
self.assertTrue(np.array_equal(output_np, output_dy_np))
def test_roi_pool_error(self):
with self.static_graph():
inputs = paddle.static.data(
name='inputs', shape=[2, 12, 20, 20], dtype='float32')
rois = paddle.static.data(
name='data_error', shape=[10, 4], dtype='int32', lod_level=1)
self.assertRaises(
TypeError,
ops.roi_pool,
input=inputs,
rois=rois,
output_size=(7, 7))
class TestIoUSimilarity(LayerTest):
def test_iou_similarity(self):
b, c, h, w = 2, 12, 20, 20
inputs_np = np.random.rand(b, c, h, w).astype('float32')
output_size = (7, 7)
x_np = make_rois(h, w, [20], output_size)
y_np = make_rois(h, w, [10], output_size)
with self.static_graph():
x = paddle.static.data(name='x', shape=[20, 4], dtype='float32')
y = paddle.static.data(name='y', shape=[10, 4], dtype='float32')
iou = ops.iou_similarity(x=x, y=y)
iou_np, = self.get_static_graph_result(
feed={
'x': x_np,
'y': y_np,
}, fetch_list=[iou], with_lod=False)
with self.dynamic_graph():
x_dy = base.to_variable(x_np)
y_dy = base.to_variable(y_np)
iou_dy = ops.iou_similarity(x=x_dy, y=y_dy)
iou_dy_np = iou_dy.numpy()
self.assertTrue(np.array_equal(iou_np, iou_dy_np))
class TestBipartiteMatch(LayerTest):
def test_bipartite_match(self):
distance = np.random.random((20, 10)).astype('float32')
with self.static_graph():
x = paddle.static.data(name='x', shape=[20, 10], dtype='float32')
match_indices, match_dist = ops.bipartite_match(
x, match_type='per_prediction', dist_threshold=0.5)
match_indices_np, match_dist_np = self.get_static_graph_result(
feed={'x': distance, },
fetch_list=[match_indices, match_dist],
with_lod=False)
with self.dynamic_graph():
x_dy = base.to_variable(distance)
match_indices_dy, match_dist_dy = ops.bipartite_match(
x_dy, match_type='per_prediction', dist_threshold=0.5)
match_indices_dy_np = match_indices_dy.numpy()
match_dist_dy_np = match_dist_dy.numpy()
self.assertTrue(np.array_equal(match_indices_np, match_indices_dy_np))
self.assertTrue(np.array_equal(match_dist_np, match_dist_dy_np))
class TestYoloBox(LayerTest):
def test_yolo_box(self):
# x shape [N C H W], C=K * (5 + class_num), class_num=10, K=2
np_x = np.random.random([1, 30, 7, 7]).astype('float32')
np_origin_shape = np.array([[608, 608]], dtype='int32')
class_num = 10
conf_thresh = 0.01
downsample_ratio = 32
scale_x_y = 1.2
# static
with self.static_graph():
# x shape [N C H W], C=K * (5 + class_num), class_num=10, K=2
x = paddle.static.data(
name='x', shape=[1, 30, 7, 7], dtype='float32')
origin_shape = paddle.static.data(
name='origin_shape', shape=[1, 2], dtype='int32')
boxes, scores = ops.yolo_box(
x,
origin_shape, [10, 13, 30, 13],
class_num,
conf_thresh,
downsample_ratio,
scale_x_y=scale_x_y)
boxes_np, scores_np = self.get_static_graph_result(
feed={
'x': np_x,
'origin_shape': np_origin_shape,
},
fetch_list=[boxes, scores],
with_lod=False)
# dygraph
with self.dynamic_graph():
x_dy = fluid.layers.assign(np_x)
origin_shape_dy = fluid.layers.assign(np_origin_shape)
boxes_dy, scores_dy = ops.yolo_box(
x_dy,
origin_shape_dy, [10, 13, 30, 13],
10,
0.01,
32,
scale_x_y=scale_x_y)
boxes_dy_np = boxes_dy.numpy()
scores_dy_np = scores_dy.numpy()
self.assertTrue(np.array_equal(boxes_np, boxes_dy_np))
self.assertTrue(np.array_equal(scores_np, scores_dy_np))
def test_yolo_box_error(self):
with self.static_graph():
# x shape [N C H W], C=K * (5 + class_num), class_num=10, K=2
x = paddle.static.data(
name='x', shape=[1, 30, 7, 7], dtype='float32')
origin_shape = paddle.static.data(
name='origin_shape', shape=[1, 2], dtype='int32')
self.assertRaises(
TypeError,
ops.yolo_box,
x,
origin_shape, [10, 13, 30, 13],
10.123,
0.01,
32,
scale_x_y=1.2)
class TestPriorBox(LayerTest):
def test_prior_box(self):
input_np = np.random.rand(2, 10, 32, 32).astype('float32')
image_np = np.random.rand(2, 10, 40, 40).astype('float32')
min_sizes = [2, 4]
with self.static_graph():
input = paddle.static.data(
name='input', shape=[2, 10, 32, 32], dtype='float32')
image = paddle.static.data(
name='image', shape=[2, 10, 40, 40], dtype='float32')
box, var = ops.prior_box(
input=input,
image=image,
min_sizes=min_sizes,
clip=True,
flip=True)
box_np, var_np = self.get_static_graph_result(
feed={
'input': input_np,
'image': image_np,
},
fetch_list=[box, var],
with_lod=False)
with self.dynamic_graph():
inputs_dy = base.to_variable(input_np)
image_dy = base.to_variable(image_np)
box_dy, var_dy = ops.prior_box(
input=inputs_dy,
image=image_dy,
min_sizes=min_sizes,
clip=True,
flip=True)
box_dy_np = box_dy.numpy()
var_dy_np = var_dy.numpy()
self.assertTrue(np.array_equal(box_np, box_dy_np))
self.assertTrue(np.array_equal(var_np, var_dy_np))
def test_prior_box_error(self):
with self.static_graph():
input = paddle.static.data(
name='input', shape=[2, 10, 32, 32], dtype='int32')
image = paddle.static.data(
name='image', shape=[2, 10, 40, 40], dtype='int32')
self.assertRaises(
TypeError,
ops.prior_box,
input=input,
image=image,
min_sizes=[2, 4],
clip=True,
flip=True)
class TestAnchorGenerator(LayerTest):
def test_anchor_generator(self):
b, c, h, w = 2, 48, 16, 16
input_np = np.random.rand(2, 48, 16, 16).astype('float32')
with self.static_graph():
input = paddle.static.data(
name='input', shape=[b, c, h, w], dtype='float32')
anchor, var = ops.anchor_generator(
input=input,
anchor_sizes=[64, 128, 256, 512],
aspect_ratios=[0.5, 1.0, 2.0],
variance=[0.1, 0.1, 0.2, 0.2],
stride=[16.0, 16.0],
offset=0.5)
anchor_np, var_np = self.get_static_graph_result(
feed={'input': input_np, },
fetch_list=[anchor, var],
with_lod=False)
with self.dynamic_graph():
inputs_dy = base.to_variable(input_np)
anchor_dy, var_dy = ops.anchor_generator(
input=inputs_dy,
anchor_sizes=[64, 128, 256, 512],
aspect_ratios=[0.5, 1.0, 2.0],
variance=[0.1, 0.1, 0.2, 0.2],
stride=[16.0, 16.0],
offset=0.5)
anchor_dy_np = anchor_dy.numpy()
var_dy_np = var_dy.numpy()
self.assertTrue(np.array_equal(anchor_np, anchor_dy_np))
self.assertTrue(np.array_equal(var_np, var_dy_np))
class TestMulticlassNms(LayerTest):
def test_multiclass_nms(self):
boxes_np = np.random.rand(81, 4).astype('float32')
scores_np = np.random.rand(81).astype('float32')
rois_num_np = np.array([40, 41]).astype('int32')
with self.static_graph():
boxes = paddle.static.data(
name='bboxes', shape=[81, 4], dtype='float32', lod_level=1)
scores = paddle.static.data(
name='scores', shape=[81], dtype='float32', lod_level=1)
rois_num = paddle.static.data(
name='rois_num', shape=[40, 41], dtype='int32')
output = ops.multiclass_nms(
bboxes=boxes,
scores=scores,
background_label=0,
score_threshold=0.5,
nms_top_k=400,
nms_threshold=0.3,
keep_top_k=200,
normalized=False,
return_index=True,
rois_num=rois_num)
out_np, index_np, nms_rois_num_np = self.get_static_graph_result(
feed={
'bboxes': boxes_np,
'scores': scores_np,
'rois_num': rois_num_np
},
fetch_list=output,
with_lod=False)
with self.dynamic_graph():
boxes_dy = base.to_variable(boxes_np)
scores_dy = base.to_variable(scores_np)
rois_num_dy = base.to_variable(rois_num_np)
out_dy, index_dy, nms_rois_num_dy = ops.multiclass_nms(
bboxes=boxes_dy,
scores=scores_dy,
background_label=0,
score_threshold=0.5,
nms_top_k=400,
nms_threshold=0.3,
keep_top_k=200,
normalized=False,
return_index=True,
rois_num=rois_num_dy)
out_dy_np = out_dy.numpy()
index_dy_np = index_dy.numpy()
nms_rois_num_dy_np = nms_rois_num_dy.numpy()
self.assertTrue(np.array_equal(out_np, out_dy_np))
self.assertTrue(np.array_equal(index_np, index_dy_np))
self.assertTrue(np.array_equal(nms_rois_num_np, nms_rois_num_dy_np))
def test_multiclass_nms_error(self):
with self.static_graph():
boxes = paddle.static.data(
name='bboxes', shape=[81, 4], dtype='float32', lod_level=1)
scores = paddle.static.data(
name='scores', shape=[81], dtype='float32', lod_level=1)
rois_num = paddle.static.data(
name='rois_num', shape=[40, 41], dtype='int32')
self.assertRaises(
TypeError,
ops.multiclass_nms,
boxes=boxes,
scores=scores,
background_label=0,
score_threshold=0.5,
nms_top_k=400,
nms_threshold=0.3,
keep_top_k=200,
normalized=False,
return_index=True,
rois_num=rois_num)
class TestMatrixNMS(LayerTest):
def test_matrix_nms(self):
N, M, C = 7, 1200, 21
BOX_SIZE = 4
nms_top_k = 400
keep_top_k = 200
score_threshold = 0.01
post_threshold = 0.
scores_np = np.random.random((N * M, C)).astype('float32')
scores_np = np.apply_along_axis(softmax, 1, scores_np)
scores_np = np.reshape(scores_np, (N, M, C))
scores_np = np.transpose(scores_np, (0, 2, 1))
boxes_np = np.random.random((N, M, BOX_SIZE)).astype('float32')
boxes_np[:, :, 0:2] = boxes_np[:, :, 0:2] * 0.5
boxes_np[:, :, 2:4] = boxes_np[:, :, 2:4] * 0.5 + 0.5
with self.static_graph():
boxes = paddle.static.data(
name='boxes', shape=[N, M, BOX_SIZE], dtype='float32')
scores = paddle.static.data(
name='scores', shape=[N, C, M], dtype='float32')
out, index, _ = ops.matrix_nms(
bboxes=boxes,
scores=scores,
score_threshold=score_threshold,
post_threshold=post_threshold,
nms_top_k=nms_top_k,
keep_top_k=keep_top_k,
return_index=True)
out_np, index_np = self.get_static_graph_result(
feed={'boxes': boxes_np,
'scores': scores_np},
fetch_list=[out, index],
with_lod=True)
with self.dynamic_graph():
boxes_dy = base.to_variable(boxes_np)
scores_dy = base.to_variable(scores_np)
out_dy, index_dy, _ = ops.matrix_nms(
bboxes=boxes_dy,
scores=scores_dy,
score_threshold=score_threshold,
post_threshold=post_threshold,
nms_top_k=nms_top_k,
keep_top_k=keep_top_k,
return_index=True)
out_dy_np = out_dy.numpy()
index_dy_np = index_dy.numpy()
self.assertTrue(np.array_equal(out_np, out_dy_np))
self.assertTrue(np.array_equal(index_np, index_dy_np))
def test_matrix_nms_error(self):
with self.static_graph():
bboxes = paddle.static.data(
name='bboxes', shape=[7, 1200, 4], dtype='float32')
scores = paddle.static.data(
name='data_error', shape=[7, 21, 1200], dtype='int32')
self.assertRaises(
TypeError,
ops.matrix_nms,
bboxes=bboxes,
scores=scores,
score_threshold=0.01,
post_threshold=0.,
nms_top_k=400,
keep_top_k=200,
return_index=True)
class TestBoxCoder(LayerTest):
def test_box_coder(self):
prior_box_np = np.random.random((81, 4)).astype('float32')
prior_box_var_np = np.random.random((81, 4)).astype('float32')
target_box_np = np.random.random((20, 81, 4)).astype('float32')
# static
with self.static_graph():
prior_box = paddle.static.data(
name='prior_box', shape=[81, 4], dtype='float32')
prior_box_var = paddle.static.data(
name='prior_box_var', shape=[81, 4], dtype='float32')
target_box = paddle.static.data(
name='target_box', shape=[20, 81, 4], dtype='float32')
boxes = ops.box_coder(
prior_box=prior_box,
prior_box_var=prior_box_var,
target_box=target_box,
code_type="decode_center_size",
box_normalized=False)
boxes_np, = self.get_static_graph_result(
feed={
'prior_box': prior_box_np,
'prior_box_var': prior_box_var_np,
'target_box': target_box_np,
},
fetch_list=[boxes],
with_lod=False)
# dygraph
with self.dynamic_graph():
prior_box_dy = base.to_variable(prior_box_np)
prior_box_var_dy = base.to_variable(prior_box_var_np)
target_box_dy = base.to_variable(target_box_np)
boxes_dy = ops.box_coder(
prior_box=prior_box_dy,
prior_box_var=prior_box_var_dy,
target_box=target_box_dy,
code_type="decode_center_size",
box_normalized=False)
boxes_dy_np = boxes_dy.numpy()
self.assertTrue(np.array_equal(boxes_np, boxes_dy_np))
def test_box_coder_error(self):
with self.static_graph():
prior_box = paddle.static.data(
name='prior_box', shape=[81, 4], dtype='int32')
prior_box_var = paddle.static.data(
name='prior_box_var', shape=[81, 4], dtype='float32')
target_box = paddle.static.data(
name='target_box', shape=[20, 81, 4], dtype='float32')
self.assertRaises(TypeError, ops.box_coder, prior_box,
prior_box_var, target_box)
class TestGenerateProposals(LayerTest):
def test_generate_proposals(self):
scores_np = np.random.rand(2, 3, 4, 4).astype('float32')
bbox_deltas_np = np.random.rand(2, 12, 4, 4).astype('float32')
im_shape_np = np.array([[8, 8], [6, 6]]).astype('float32')
anchors_np = np.reshape(np.arange(4 * 4 * 3 * 4),
[4, 4, 3, 4]).astype('float32')
variances_np = np.ones((4, 4, 3, 4)).astype('float32')
with self.static_graph():
scores = paddle.static.data(
name='scores', shape=[2, 3, 4, 4], dtype='float32')
bbox_deltas = paddle.static.data(
name='bbox_deltas', shape=[2, 12, 4, 4], dtype='float32')
im_shape = paddle.static.data(
name='im_shape', shape=[2, 2], dtype='float32')
anchors = paddle.static.data(
name='anchors', shape=[4, 4, 3, 4], dtype='float32')
variances = paddle.static.data(
name='var', shape=[4, 4, 3, 4], dtype='float32')
rois, roi_probs, rois_num = ops.generate_proposals(
scores,
bbox_deltas,
im_shape,
anchors,
variances,
pre_nms_top_n=10,
post_nms_top_n=5,
return_rois_num=True)
rois_stat, roi_probs_stat, rois_num_stat = self.get_static_graph_result(
feed={
'scores': scores_np,
'bbox_deltas': bbox_deltas_np,
'im_shape': im_shape_np,
'anchors': anchors_np,
'var': variances_np
},
fetch_list=[rois, roi_probs, rois_num],
with_lod=True)
with self.dynamic_graph():
scores_dy = base.to_variable(scores_np)
bbox_deltas_dy = base.to_variable(bbox_deltas_np)
im_shape_dy = base.to_variable(im_shape_np)
anchors_dy = base.to_variable(anchors_np)
variances_dy = base.to_variable(variances_np)
rois, roi_probs, rois_num = ops.generate_proposals(
scores_dy,
bbox_deltas_dy,
im_shape_dy,
anchors_dy,
variances_dy,
pre_nms_top_n=10,
post_nms_top_n=5,
return_rois_num=True)
rois_dy = rois.numpy()
roi_probs_dy = roi_probs.numpy()
rois_num_dy = rois_num.numpy()
self.assertTrue(np.array_equal(np.array(rois_stat), rois_dy))
self.assertTrue(np.array_equal(np.array(roi_probs_stat), roi_probs_dy))
self.assertTrue(np.array_equal(np.array(rois_num_stat), rois_num_dy))
if __name__ == '__main__':
unittest.main()