You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

259 lines
7.9 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import copy
import paddle
import paddle.nn as nn
import paddle.optimizer as optimizer
from paddle.optimizer.lr import CosineAnnealingDecay
import paddle.regularizer as regularizer
from paddle import cos
from ppdet.core.workspace import register, serializable
__all__ = ['LearningRate', 'OptimizerBuilder']
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
@serializable
class CosineDecay(object):
"""
Cosine learning rate decay
Args:
max_epochs (int): max epochs for the training process.
if you commbine cosine decay with warmup, it is recommended that
the max_iters is much larger than the warmup iter
"""
def __init__(self, max_epochs=1000, use_warmup=True):
self.max_epochs = max_epochs
self.use_warmup = use_warmup
def __call__(self,
base_lr=None,
boundary=None,
value=None,
step_per_epoch=None):
assert base_lr is not None, "either base LR or values should be provided"
max_iters = self.max_epochs * int(step_per_epoch)
if boundary is not None and value is not None and self.use_warmup:
for i in range(int(boundary[-1]), max_iters):
boundary.append(i)
decayed_lr = base_lr * 0.5 * (
math.cos(i * math.pi / max_iters) + 1)
value.append(decayed_lr)
return optimizer.lr.PiecewiseDecay(boundary, value)
return optimizer.lr.CosineAnnealingDecay(base_lr, T_max=max_iters)
@serializable
class PiecewiseDecay(object):
"""
Multi step learning rate decay
Args:
gamma (float | list): decay factor
milestones (list): steps at which to decay learning rate
"""
def __init__(self,
gamma=[0.1, 0.01],
milestones=[8, 11],
values=None,
use_warmup=True):
super(PiecewiseDecay, self).__init__()
if type(gamma) is not list:
self.gamma = []
for i in range(len(milestones)):
self.gamma.append(gamma / 10**i)
else:
self.gamma = gamma
self.milestones = milestones
self.values = values
self.use_warmup = use_warmup
def __call__(self,
base_lr=None,
boundary=None,
value=None,
step_per_epoch=None):
if boundary is not None and self.use_warmup:
boundary.extend([int(step_per_epoch) * i for i in self.milestones])
else:
# do not use LinearWarmup
boundary = [int(step_per_epoch) * i for i in self.milestones]
# self.values is setted directly in config
if self.values is not None:
assert len(self.milestones) + 1 == len(self.values)
return optimizer.lr.PiecewiseDecay(boundary, self.values)
# value is computed by self.gamma
if value is not None:
for i in self.gamma:
value.append(base_lr * i)
return optimizer.lr.PiecewiseDecay(boundary, value)
@serializable
class LinearWarmup(object):
"""
Warm up learning rate linearly
Args:
steps (int): warm up steps
start_factor (float): initial learning rate factor
"""
def __init__(self, steps=500, start_factor=1. / 3):
super(LinearWarmup, self).__init__()
self.steps = steps
self.start_factor = start_factor
def __call__(self, base_lr):
boundary = []
value = []
for i in range(self.steps + 1):
alpha = i / self.steps
factor = self.start_factor * (1 - alpha) + alpha
lr = base_lr * factor
value.append(lr)
if i > 0:
boundary.append(i)
return boundary, value
@register
class LearningRate(object):
"""
Learning Rate configuration
Args:
base_lr (float): base learning rate
schedulers (list): learning rate schedulers
"""
__category__ = 'optim'
def __init__(self,
base_lr=0.01,
schedulers=[PiecewiseDecay(), LinearWarmup()]):
super(LearningRate, self).__init__()
self.base_lr = base_lr
self.schedulers = schedulers
def __call__(self, step_per_epoch):
assert len(self.schedulers) >= 1
if not self.schedulers[0].use_warmup:
return self.schedulers[0](base_lr=self.base_lr,
step_per_epoch=step_per_epoch)
# TODO: split warmup & decay
# warmup
boundary, value = self.schedulers[1](self.base_lr)
# decay
decay_lr = self.schedulers[0](self.base_lr, boundary, value,
step_per_epoch)
return decay_lr
@register
class OptimizerBuilder():
"""
Build optimizer handles
Args:
regularizer (object): an `Regularizer` instance
optimizer (object): an `Optimizer` instance
"""
__category__ = 'optim'
def __init__(self,
clip_grad_by_norm=None,
regularizer={'type': 'L2',
'factor': .0001},
optimizer={'type': 'Momentum',
'momentum': .9}):
self.clip_grad_by_norm = clip_grad_by_norm
self.regularizer = regularizer
self.optimizer = optimizer
def __call__(self, learning_rate, params=None):
if self.clip_grad_by_norm is not None:
grad_clip = nn.ClipGradByGlobalNorm(
clip_norm=self.clip_grad_by_norm)
else:
grad_clip = None
if self.regularizer:
reg_type = self.regularizer['type'] + 'Decay'
reg_factor = self.regularizer['factor']
regularization = getattr(regularizer, reg_type)(reg_factor)
else:
regularization = None
optim_args = self.optimizer.copy()
optim_type = optim_args['type']
del optim_args['type']
op = getattr(optimizer, optim_type)
return op(learning_rate=learning_rate,
parameters=params,
weight_decay=regularization,
grad_clip=grad_clip,
**optim_args)
class ModelEMA(object):
def __init__(self, decay, model, use_thres_step=False):
self.step = 0
self.decay = decay
self.state_dict = dict()
for k, v in model.state_dict().items():
self.state_dict[k] = paddle.zeros_like(v)
self.use_thres_step = use_thres_step
def update(self, model):
if self.use_thres_step:
decay = min(self.decay, (1 + self.step) / (10 + self.step))
else:
decay = self.decay
self._decay = decay
model_dict = model.state_dict()
for k, v in self.state_dict.items():
v = decay * v + (1 - decay) * model_dict[k]
v.stop_gradient = True
self.state_dict[k] = v
self.step += 1
def apply(self):
if self.step == 0:
return self.state_dict
state_dict = dict()
for k, v in self.state_dict.items():
v = v / (1 - self._decay**self.step)
v.stop_gradient = True
state_dict[k] = v
return state_dict