You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
105 lines
3.2 KiB
105 lines
3.2 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
import os, sys
|
|
# add python path of PadleDetection to sys.path
|
|
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
|
|
if parent_path not in sys.path:
|
|
sys.path.append(parent_path)
|
|
|
|
# ignore warning log
|
|
import warnings
|
|
warnings.filterwarnings('ignore')
|
|
|
|
import paddle
|
|
|
|
from ppdet.core.workspace import load_config, merge_config
|
|
from ppdet.utils.check import check_gpu, check_version, check_config
|
|
from ppdet.utils.cli import ArgsParser
|
|
from ppdet.engine import Trainer
|
|
from ppdet.slim import build_slim_model
|
|
|
|
from ppdet.utils.logger import setup_logger
|
|
logger = setup_logger('export_model')
|
|
|
|
|
|
def parse_args():
|
|
parser = ArgsParser()
|
|
parser.add_argument(
|
|
"--output_dir",
|
|
type=str,
|
|
default="output_inference",
|
|
help="Directory for storing the output model files.")
|
|
parser.add_argument(
|
|
"--export_serving_model",
|
|
type=bool,
|
|
default=False,
|
|
help="Whether to export serving model or not.")
|
|
parser.add_argument(
|
|
"--slim_config",
|
|
default=None,
|
|
type=str,
|
|
help="Configuration file of slim method.")
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def run(FLAGS, cfg):
|
|
# build detector
|
|
trainer = Trainer(cfg, mode='test')
|
|
|
|
# load weights
|
|
trainer.load_weights(cfg.weights)
|
|
|
|
# export model
|
|
trainer.export(FLAGS.output_dir)
|
|
|
|
if FLAGS.export_serving_model:
|
|
from paddle_serving_client.io import inference_model_to_serving
|
|
model_name = os.path.splitext(os.path.split(cfg.filename)[-1])[0]
|
|
|
|
inference_model_to_serving(
|
|
dirname="{}/{}".format(FLAGS.output_dir, model_name),
|
|
serving_server="{}/{}/serving_server".format(FLAGS.output_dir,
|
|
model_name),
|
|
serving_client="{}/{}/serving_client".format(FLAGS.output_dir,
|
|
model_name),
|
|
model_filename="model.pdmodel",
|
|
params_filename="model.pdiparams")
|
|
|
|
|
|
def main():
|
|
paddle.set_device("cpu")
|
|
FLAGS = parse_args()
|
|
cfg = load_config(FLAGS.config)
|
|
# TODO: to be refined in the future
|
|
if 'norm_type' in cfg and cfg['norm_type'] == 'sync_bn':
|
|
FLAGS.opt['norm_type'] = 'bn'
|
|
merge_config(FLAGS.opt)
|
|
|
|
if FLAGS.slim_config:
|
|
cfg = build_slim_model(cfg, FLAGS.slim_config, mode='test')
|
|
|
|
check_config(cfg)
|
|
check_gpu(cfg.use_gpu)
|
|
check_version()
|
|
|
|
run(FLAGS, cfg)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|
|
|