leaf
fd82b5c7eb
|
4 years ago | |
---|---|---|
.. | ||
demo | 4 years ago | |
README.md | 4 years ago | |
README_cn.md | 4 years ago | |
pedestrian.json | 4 years ago | |
pedestrian_yolov3_darknet.yml | 4 years ago |
README.md
English | 简体中文
PaddleDetection applied for specific scenarios
We provide some models implemented by PaddlePaddle to detect objects in specific scenarios, users can download the models and use them in these scenarios.
Task | Algorithm | Box AP | Download | Configs |
---|---|---|---|---|
Pedestrian Detection | YOLOv3 | 51.8 | model | config |
Pedestrian Detection
The main applications of pedetestrian detection include intelligent monitoring. In this scenary, photos of pedetestrians are taken by surveillance cameras in public areas, then pedestrian detection are conducted on these photos.
1. Network
The network for detecting vehicles is YOLOv3, the backbone of which is Dacknet53.
2. Configuration for training
PaddleDetection provides users with a configuration file yolov3_darknet53_270e_coco.yml to train YOLOv3 on the COCO dataset, compared with this file, we modify some parameters as followed to conduct the training for pedestrian detection:
- num_classes: 1
- dataset_dir: dataset/pedestrian
3. Accuracy
The accuracy of the model trained and evaluted on our private data is shown as followed:
AP at IoU=.50:.05:.95 is 0.518.
AP at IoU=.50 is 0.792.
4. Inference
Users can employ the model to conduct the inference:
export CUDA_VISIBLE_DEVICES=0
python -u tools/infer.py -c configs/pedestrian/pedestrian_yolov3_darknet.yml \
-o weights=https://paddledet.bj.bcebos.com/models/pedestrian_yolov3_darknet.pdparams \
--infer_dir configs/pedestrian/demo \
--draw_threshold 0.3 \
--output_dir configs/pedestrian/demo/output
Some inference results are visualized below: