You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
281 lines
9.6 KiB
281 lines
9.6 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import copy
|
|
import traceback
|
|
import six
|
|
import sys
|
|
import multiprocessing as mp
|
|
if sys.version_info >= (3, 0):
|
|
import queue as Queue
|
|
else:
|
|
import Queue
|
|
import numpy as np
|
|
|
|
from paddle.io import DataLoader
|
|
from paddle.io import DistributedBatchSampler
|
|
|
|
from ppdet.core.workspace import register, serializable, create
|
|
from . import transform
|
|
from .shm_utils import _get_shared_memory_size_in_M
|
|
|
|
from ppdet.utils.logger import setup_logger
|
|
logger = setup_logger('reader')
|
|
|
|
MAIN_PID = os.getpid()
|
|
|
|
|
|
class Compose(object):
|
|
def __init__(self, transforms, num_classes=80):
|
|
self.transforms = transforms
|
|
self.transforms_cls = []
|
|
for t in self.transforms:
|
|
for k, v in t.items():
|
|
op_cls = getattr(transform, k)
|
|
f = op_cls(**v)
|
|
if hasattr(f, 'num_classes'):
|
|
f.num_classes = num_classes
|
|
|
|
self.transforms_cls.append(f)
|
|
|
|
def __call__(self, data):
|
|
for f in self.transforms_cls:
|
|
try:
|
|
data = f(data)
|
|
except Exception as e:
|
|
stack_info = traceback.format_exc()
|
|
logger.warn("fail to map op [{}] with error: {} and stack:\n{}".
|
|
format(f, e, str(stack_info)))
|
|
raise e
|
|
|
|
return data
|
|
|
|
|
|
class BatchCompose(Compose):
|
|
def __init__(self, transforms, num_classes=80):
|
|
super(BatchCompose, self).__init__(transforms, num_classes)
|
|
self.output_fields = mp.Manager().list([])
|
|
self.lock = mp.Lock()
|
|
|
|
def __call__(self, data):
|
|
for f in self.transforms_cls:
|
|
try:
|
|
data = f(data)
|
|
except Exception as e:
|
|
stack_info = traceback.format_exc()
|
|
logger.warn("fail to map op [{}] with error: {} and stack:\n{}".
|
|
format(f, e, str(stack_info)))
|
|
raise e
|
|
|
|
# accessing ListProxy in main process (no worker subprocess)
|
|
# may incur errors in some enviroments, ListProxy back to
|
|
# list if no worker process start, while this `__call__`
|
|
# will be called in main process
|
|
global MAIN_PID
|
|
if os.getpid() == MAIN_PID and \
|
|
isinstance(self.output_fields, mp.managers.ListProxy):
|
|
self.output_fields = []
|
|
|
|
# parse output fields by first sample
|
|
# **this shoule be fixed if paddle.io.DataLoader support**
|
|
# For paddle.io.DataLoader not support dict currently,
|
|
# we need to parse the key from the first sample,
|
|
# BatchCompose.__call__ will be called in each worker
|
|
# process, so lock is need here.
|
|
if len(self.output_fields) == 0:
|
|
self.lock.acquire()
|
|
if len(self.output_fields) == 0:
|
|
for k, v in data[0].items():
|
|
# FIXME(dkp): for more elegent coding
|
|
if k not in ['flipped', 'h', 'w']:
|
|
self.output_fields.append(k)
|
|
self.lock.release()
|
|
|
|
data = [[data[i][k] for k in self.output_fields]
|
|
for i in range(len(data))]
|
|
data = list(zip(*data))
|
|
|
|
batch_data = [np.stack(d, axis=0) for d in data]
|
|
return batch_data
|
|
|
|
|
|
class BaseDataLoader(object):
|
|
"""
|
|
Base DataLoader implementation for detection models
|
|
|
|
Args:
|
|
sample_transforms (list): a list of transforms to perform
|
|
on each sample
|
|
batch_transforms (list): a list of transforms to perform
|
|
on batch
|
|
batch_size (int): batch size for batch collating, default 1.
|
|
shuffle (bool): whether to shuffle samples
|
|
drop_last (bool): whether to drop the last incomplete,
|
|
default False
|
|
drop_empty (bool): whether to drop samples with no ground
|
|
truth labels, default True
|
|
num_classes (int): class number of dataset, default 80
|
|
use_shared_memory (bool): whether to use shared memory to
|
|
accelerate data loading, enable this only if you
|
|
are sure that the shared memory size of your OS
|
|
is larger than memory cost of input datas of model.
|
|
Note that shared memory will be automatically
|
|
disabled if the shared memory of OS is less than
|
|
1G, which is not enough for detection models.
|
|
Default False.
|
|
"""
|
|
|
|
def __init__(self,
|
|
sample_transforms=[],
|
|
batch_transforms=[],
|
|
batch_size=1,
|
|
shuffle=False,
|
|
drop_last=False,
|
|
drop_empty=True,
|
|
num_classes=80,
|
|
use_shared_memory=False,
|
|
**kwargs):
|
|
# sample transform
|
|
self._sample_transforms = Compose(
|
|
sample_transforms, num_classes=num_classes)
|
|
|
|
# batch transfrom
|
|
self._batch_transforms = BatchCompose(batch_transforms, num_classes)
|
|
|
|
self.batch_size = batch_size
|
|
self.shuffle = shuffle
|
|
self.drop_last = drop_last
|
|
self.use_shared_memory = use_shared_memory
|
|
self.kwargs = kwargs
|
|
|
|
def __call__(self,
|
|
dataset,
|
|
worker_num,
|
|
batch_sampler=None,
|
|
return_list=False):
|
|
self.dataset = dataset
|
|
self.dataset.check_or_download_dataset()
|
|
self.dataset.parse_dataset()
|
|
# get data
|
|
self.dataset.set_transform(self._sample_transforms)
|
|
# set kwargs
|
|
self.dataset.set_kwargs(**self.kwargs)
|
|
# batch sampler
|
|
if batch_sampler is None:
|
|
self._batch_sampler = DistributedBatchSampler(
|
|
self.dataset,
|
|
batch_size=self.batch_size,
|
|
shuffle=self.shuffle,
|
|
drop_last=self.drop_last)
|
|
else:
|
|
self._batch_sampler = batch_sampler
|
|
|
|
use_shared_memory = self.use_shared_memory
|
|
# check whether shared memory size is bigger than 1G(1024M)
|
|
if use_shared_memory:
|
|
shm_size = _get_shared_memory_size_in_M()
|
|
if shm_size is not None and shm_size < 1024.:
|
|
logger.warn("Shared memory size is less than 1G, "
|
|
"disable shared_memory in DataLoader")
|
|
use_shared_memory = False
|
|
|
|
self.dataloader = DataLoader(
|
|
dataset=self.dataset,
|
|
batch_sampler=self._batch_sampler,
|
|
collate_fn=self._batch_transforms,
|
|
num_workers=worker_num,
|
|
return_list=return_list,
|
|
use_shared_memory=use_shared_memory)
|
|
self.loader = iter(self.dataloader)
|
|
|
|
return self
|
|
|
|
def __len__(self):
|
|
return len(self._batch_sampler)
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __next__(self):
|
|
# pack {filed_name: field_data} here
|
|
# looking forward to support dictionary
|
|
# data structure in paddle.io.DataLoader
|
|
try:
|
|
data = next(self.loader)
|
|
return {
|
|
k: v
|
|
for k, v in zip(self._batch_transforms.output_fields, data)
|
|
}
|
|
except StopIteration:
|
|
self.loader = iter(self.dataloader)
|
|
six.reraise(*sys.exc_info())
|
|
|
|
def next(self):
|
|
# python2 compatibility
|
|
return self.__next__()
|
|
|
|
|
|
@register
|
|
class TrainReader(BaseDataLoader):
|
|
__shared__ = ['num_classes']
|
|
|
|
def __init__(self,
|
|
sample_transforms=[],
|
|
batch_transforms=[],
|
|
batch_size=1,
|
|
shuffle=True,
|
|
drop_last=True,
|
|
drop_empty=True,
|
|
num_classes=80,
|
|
**kwargs):
|
|
super(TrainReader, self).__init__(sample_transforms, batch_transforms,
|
|
batch_size, shuffle, drop_last,
|
|
drop_empty, num_classes, **kwargs)
|
|
|
|
|
|
@register
|
|
class EvalReader(BaseDataLoader):
|
|
__shared__ = ['num_classes']
|
|
|
|
def __init__(self,
|
|
sample_transforms=[],
|
|
batch_transforms=[],
|
|
batch_size=1,
|
|
shuffle=False,
|
|
drop_last=True,
|
|
drop_empty=True,
|
|
num_classes=80,
|
|
**kwargs):
|
|
super(EvalReader, self).__init__(sample_transforms, batch_transforms,
|
|
batch_size, shuffle, drop_last,
|
|
drop_empty, num_classes, **kwargs)
|
|
|
|
|
|
@register
|
|
class TestReader(BaseDataLoader):
|
|
__shared__ = ['num_classes']
|
|
|
|
def __init__(self,
|
|
sample_transforms=[],
|
|
batch_transforms=[],
|
|
batch_size=1,
|
|
shuffle=False,
|
|
drop_last=False,
|
|
drop_empty=True,
|
|
num_classes=80,
|
|
**kwargs):
|
|
super(TestReader, self).__init__(sample_transforms, batch_transforms,
|
|
batch_size, shuffle, drop_last,
|
|
drop_empty, num_classes, **kwargs)
|
|
|