You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

111 lines
4.0 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from ppdet.core.workspace import register
from ppdet.modeling import ops
def _to_list(v):
if not isinstance(v, (list, tuple)):
return [v]
return v
@register
class RoIAlign(object):
"""
RoI Align module
For more details, please refer to the document of roi_align in
in ppdet/modeing/ops.py
Args:
resolution (int): The output size, default 14
spatial_scale (float): Multiplicative spatial scale factor to translate
ROI coords from their input scale to the scale used when pooling.
default 0.0625
sampling_ratio (int): The number of sampling points in the interpolation
grid, default 0
canconical_level (int): The referring level of FPN layer with
specified level. default 4
canonical_size (int): The referring scale of FPN layer with
specified scale. default 224
start_level (int): The start level of FPN layer to extract RoI feature,
default 0
end_level (int): The end level of FPN layer to extract RoI feature,
default 3
aligned (bool): Whether to add offset to rois' coord in roi_align.
default false
"""
def __init__(self,
resolution=14,
spatial_scale=0.0625,
sampling_ratio=0,
canconical_level=4,
canonical_size=224,
start_level=0,
end_level=3,
aligned=False):
super(RoIAlign, self).__init__()
self.resolution = resolution
self.spatial_scale = _to_list(spatial_scale)
self.sampling_ratio = sampling_ratio
self.canconical_level = canconical_level
self.canonical_size = canonical_size
self.start_level = start_level
self.end_level = end_level
self.aligned = aligned
@classmethod
def from_config(cls, cfg, input_shape):
return {'spatial_scale': [1. / i.stride for i in input_shape]}
def __call__(self, feats, roi, rois_num):
roi = paddle.concat(roi) if len(roi) > 1 else roi[0]
if len(feats) == 1:
rois_feat = ops.roi_align(
feats[self.start_level],
roi,
self.resolution,
self.spatial_scale[0],
rois_num=rois_num,
aligned=self.aligned)
else:
offset = 2
k_min = self.start_level + offset
k_max = self.end_level + offset
rois_dist, restore_index, rois_num_dist = ops.distribute_fpn_proposals(
roi,
k_min,
k_max,
self.canconical_level,
self.canonical_size,
rois_num=rois_num)
rois_feat_list = []
for lvl in range(self.start_level, self.end_level + 1):
roi_feat = ops.roi_align(
feats[lvl],
rois_dist[lvl],
self.resolution,
self.spatial_scale[lvl],
sampling_ratio=self.sampling_ratio,
rois_num=rois_num_dist[lvl],
aligned=self.aligned)
rois_feat_list.append(roi_feat)
rois_feat_shuffle = paddle.concat(rois_feat_list)
rois_feat = paddle.gather(rois_feat_shuffle, restore_index)
return rois_feat