You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
110 lines
4.5 KiB
110 lines
4.5 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
|
|
from ppdet.core.workspace import register, serializable, load_config
|
|
from ppdet.core.workspace import create
|
|
from ppdet.utils.logger import setup_logger
|
|
from ppdet.modeling import ops
|
|
from ppdet.utils.checkpoint import load_pretrain_weight
|
|
from ppdet.modeling.losses import YOLOv3Loss
|
|
logger = setup_logger(__name__)
|
|
|
|
|
|
class DistillModel(nn.Layer):
|
|
def __init__(self, cfg, slim_cfg):
|
|
super(DistillModel, self).__init__()
|
|
|
|
self.student_model = create(cfg.architecture)
|
|
logger.debug('Load student model pretrain_weights:{}'.format(
|
|
cfg.pretrain_weights))
|
|
load_pretrain_weight(self.student_model, cfg.pretrain_weights)
|
|
|
|
slim_cfg = load_config(slim_cfg)
|
|
self.teacher_model = create(slim_cfg.architecture)
|
|
self.distill_loss = create(slim_cfg.distill_loss)
|
|
logger.debug('Load teacher model pretrain_weights:{}'.format(
|
|
slim_cfg.pretrain_weights))
|
|
load_pretrain_weight(self.teacher_model, slim_cfg.pretrain_weights)
|
|
|
|
for param in self.teacher_model.parameters():
|
|
param.trainable = False
|
|
|
|
def parameters(self):
|
|
return self.student_model.parameters()
|
|
|
|
def forward(self, inputs):
|
|
if self.training:
|
|
teacher_loss = self.teacher_model(inputs)
|
|
student_loss = self.student_model(inputs)
|
|
loss = self.distill_loss(self.teacher_model, self.student_model)
|
|
student_loss['distill_loss'] = loss
|
|
student_loss['teacher_loss'] = teacher_loss['loss']
|
|
student_loss['loss'] += student_loss['distill_loss']
|
|
return student_loss
|
|
else:
|
|
return self.student_model(inputs)
|
|
|
|
|
|
@register
|
|
class DistillYOLOv3Loss(nn.Layer):
|
|
def __init__(self, weight=1000):
|
|
super(DistillYOLOv3Loss, self).__init__()
|
|
self.weight = weight
|
|
|
|
def obj_weighted_reg(self, sx, sy, sw, sh, tx, ty, tw, th, tobj):
|
|
loss_x = ops.sigmoid_cross_entropy_with_logits(sx, F.sigmoid(tx))
|
|
loss_y = ops.sigmoid_cross_entropy_with_logits(sy, F.sigmoid(ty))
|
|
loss_w = paddle.abs(sw - tw)
|
|
loss_h = paddle.abs(sh - th)
|
|
loss = paddle.add_n([loss_x, loss_y, loss_w, loss_h])
|
|
weighted_loss = paddle.mean(loss * F.sigmoid(tobj))
|
|
return weighted_loss
|
|
|
|
def obj_weighted_cls(self, scls, tcls, tobj):
|
|
loss = ops.sigmoid_cross_entropy_with_logits(scls, F.sigmoid(tcls))
|
|
weighted_loss = paddle.mean(paddle.multiply(loss, F.sigmoid(tobj)))
|
|
return weighted_loss
|
|
|
|
def obj_loss(self, sobj, tobj):
|
|
obj_mask = paddle.cast(tobj > 0., dtype="float32")
|
|
obj_mask.stop_gradient = True
|
|
loss = paddle.mean(
|
|
ops.sigmoid_cross_entropy_with_logits(sobj, obj_mask))
|
|
return loss
|
|
|
|
def forward(self, teacher_model, student_model):
|
|
teacher_distill_pairs = teacher_model.yolo_head.loss.distill_pairs
|
|
student_distill_pairs = student_model.yolo_head.loss.distill_pairs
|
|
distill_reg_loss, distill_cls_loss, distill_obj_loss = [], [], []
|
|
for s_pair, t_pair in zip(student_distill_pairs, teacher_distill_pairs):
|
|
distill_reg_loss.append(
|
|
self.obj_weighted_reg(s_pair[0], s_pair[1], s_pair[2], s_pair[
|
|
3], t_pair[0], t_pair[1], t_pair[2], t_pair[3], t_pair[4]))
|
|
distill_cls_loss.append(
|
|
self.obj_weighted_cls(s_pair[5], t_pair[5], t_pair[4]))
|
|
distill_obj_loss.append(self.obj_loss(s_pair[4], t_pair[4]))
|
|
distill_reg_loss = paddle.add_n(distill_reg_loss)
|
|
distill_cls_loss = paddle.add_n(distill_cls_loss)
|
|
distill_obj_loss = paddle.add_n(distill_obj_loss)
|
|
loss = (distill_reg_loss + distill_cls_loss + distill_obj_loss
|
|
) * self.weight
|
|
return loss
|
|
|