You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
85 lines
3.1 KiB
85 lines
3.1 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import paddle
|
|
from paddle.utils import try_import
|
|
|
|
from ppdet.core.workspace import register, serializable
|
|
from ppdet.utils.logger import setup_logger
|
|
logger = setup_logger(__name__)
|
|
|
|
|
|
def print_prune_params(model):
|
|
model_dict = model.state_dict()
|
|
for key in model_dict.keys():
|
|
weight_name = model_dict[key].name
|
|
logger.info('Parameter name: {}, shape: {}'.format(
|
|
weight_name, model_dict[key].shape))
|
|
|
|
|
|
@register
|
|
@serializable
|
|
class Pruner(object):
|
|
def __init__(self,
|
|
criterion,
|
|
pruned_params,
|
|
pruned_ratios,
|
|
print_params=False):
|
|
super(Pruner, self).__init__()
|
|
assert criterion in ['l1_norm', 'fpgm'], \
|
|
"unsupported prune criterion: {}".format(criterion)
|
|
self.criterion = criterion
|
|
self.pruned_params = pruned_params
|
|
self.pruned_ratios = pruned_ratios
|
|
self.print_params = print_params
|
|
|
|
def __call__(self, model):
|
|
# FIXME: adapt to network graph when Training and inference are
|
|
# inconsistent, now only supports prune inference network graph.
|
|
model.eval()
|
|
paddleslim = try_import('paddleslim')
|
|
from paddleslim.analysis import dygraph_flops as flops
|
|
input_spec = [{
|
|
"image": paddle.ones(
|
|
shape=[1, 3, 640, 640], dtype='float32'),
|
|
"im_shape": paddle.full(
|
|
[1, 2], 640, dtype='float32'),
|
|
"scale_factor": paddle.ones(
|
|
shape=[1, 2], dtype='float32')
|
|
}]
|
|
if self.print_params:
|
|
print_prune_params(model)
|
|
|
|
ori_flops = flops(model, input_spec) / 1000
|
|
logger.info("FLOPs before pruning: {}GFLOPs".format(ori_flops))
|
|
if self.criterion == 'fpgm':
|
|
pruner = paddleslim.dygraph.FPGMFilterPruner(model, input_spec)
|
|
elif self.criterion == 'l1_norm':
|
|
pruner = paddleslim.dygraph.L1NormFilterPruner(model, input_spec)
|
|
|
|
logger.info("pruned params: {}".format(self.pruned_params))
|
|
pruned_ratios = [float(n) for n in self.pruned_ratios]
|
|
ratios = {}
|
|
for i, param in enumerate(self.pruned_params):
|
|
ratios[param] = pruned_ratios[i]
|
|
pruner.prune_vars(ratios, [0])
|
|
pruned_flops = flops(model, input_spec) / 1000
|
|
logger.info("FLOPs after pruning: {}GFLOPs; pruned ratio: {}".format(
|
|
pruned_flops, (ori_flops - pruned_flops) / ori_flops))
|
|
|
|
return model
|
|
|