重命名
This commit is contained in:
parent
85fb3ad83c
commit
1117a6a5ea
318
demo.py
318
demo.py
@ -1,318 +0,0 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
|
||||
"""
|
||||
信号设计课程小组设计
|
||||
|
||||
@ by: Leaf
|
||||
@ date: 2022-05-28
|
||||
"""
|
||||
|
||||
import mediapipe as mp
|
||||
import cv2
|
||||
# import HandDetector
|
||||
import math
|
||||
from datetime import datetime
|
||||
import time
|
||||
import numpy as np
|
||||
|
||||
|
||||
# 旋转函数
|
||||
def Rotate(angle, x, y, point_x, point_y):
|
||||
px = (x - point_x) * math.cos(angle) - (y - point_y) * math.sin(angle) + point_x
|
||||
py = (x - point_x) * math.sin(angle) + (y - point_y) * math.cos(angle) + point_y
|
||||
return px, py
|
||||
|
||||
|
||||
class HandDetector:
|
||||
"""
|
||||
使用mediapipe库查找手。导出地标像素格式。添加了额外的功能。
|
||||
如查找方式,许多手指向上或两个手指之间的距离。而且提供找到的手的边界框信息。
|
||||
"""
|
||||
|
||||
def __init__(self, mode=False, max_hands=2, detection_con=0.5, min_track_con=0.5):
|
||||
"""
|
||||
:param mode: 在静态模式下,对每个图像进行检测
|
||||
:param max_hands: 要检测的最大手数
|
||||
:param detection_con: 最小检测置信度
|
||||
:param min_track_con: 最小跟踪置信度
|
||||
"""
|
||||
self.results = None
|
||||
self.mode = mode
|
||||
self.max_hands = max_hands
|
||||
self.modelComplex = 1
|
||||
self.detection_con = detection_con
|
||||
self.min_track_con = min_track_con
|
||||
|
||||
# 初始化手部的识别模型
|
||||
self.mpHands = mp.solutions.hands
|
||||
self.hands = self.mpHands.Hands(static_image_mode=self.mode,
|
||||
max_num_hands=self.max_hands,
|
||||
min_detection_confidence=self.detection_con,
|
||||
min_tracking_confidence=self.min_track_con)
|
||||
self.mpDraw = mp.solutions.drawing_utils # 初始化绘图器
|
||||
self.tipIds = [4, 8, 12, 16, 20] # 指尖列表
|
||||
# self.knuckles = {'0': [4, 3, 2, 1], "1": [8, 7, 6, 5], "2": [12, 11, 10, 9], "3": [16, 15, 14, 13],
|
||||
# "4": [20, 19, 18, 17]}
|
||||
self.fingers = []
|
||||
self.lmList = []
|
||||
self.re_lmList = []
|
||||
|
||||
def find_hands(self, img, draw=True):
|
||||
"""
|
||||
从图像(BRG)中找到手部。
|
||||
:param img: 用于查找手的图像。
|
||||
:param draw: 在图像上绘制输出的标志。
|
||||
:return: 带或不带图形的图像
|
||||
"""
|
||||
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 将传入的图像由BGR模式转标准的Opencv模式——RGB模式,
|
||||
self.results = self.hands.process(img_rgb)
|
||||
|
||||
if self.results.multi_hand_landmarks:
|
||||
for handLms in self.results.multi_hand_landmarks:
|
||||
if draw:
|
||||
self.mpDraw.draw_landmarks(img, handLms,
|
||||
self.mpHands.HAND_CONNECTIONS)
|
||||
return img
|
||||
|
||||
def find_position(self, img, hand_no=0, draw=True):
|
||||
"""
|
||||
查找单手的地标并将其放入列表中像素格式。还可以返回手部的周围的边界框。
|
||||
:param img: 要查找的主图像
|
||||
:param hand_no: 如果检测到多只手,则为手部id
|
||||
:param draw: 在图像上绘制输出的标志。(默认绘制矩形框)
|
||||
:return: 像素格式的手部关节位置列表;手部边界框
|
||||
"""
|
||||
|
||||
x_list = []
|
||||
y_list = []
|
||||
bbox_info = []
|
||||
self.lmList = []
|
||||
self.re_lmList = []
|
||||
if self.results.multi_hand_landmarks:
|
||||
my_hand = self.results.multi_hand_landmarks[hand_no]
|
||||
for _, lm in enumerate(my_hand.landmark):
|
||||
h, w, c = img.shape
|
||||
px, py = int(lm.x * w), int(lm.y * h)
|
||||
x_list.append(px)
|
||||
y_list.append(py)
|
||||
self.lmList.append([px, py])
|
||||
if draw:
|
||||
cv2.circle(img, (px, py), 5, (255, 0, 255), cv2.FILLED)
|
||||
x_min, x_max = min(x_list), max(x_list)
|
||||
y_min, y_max = min(y_list), max(y_list)
|
||||
box_w, box_h = x_max - x_min, y_max - y_min
|
||||
bbox = x_min, y_min, box_w, box_h
|
||||
cx, cy = bbox[0] + (bbox[2] // 2), bbox[1] + (bbox[3] // 2)
|
||||
bbox_info = {"id": hand_no, "bbox": bbox, "center": (cx, cy)}
|
||||
|
||||
if draw:
|
||||
cv2.rectangle(img, (bbox[0] - 20, bbox[1] - 20),
|
||||
(bbox[0] + bbox[2] + 20, bbox[1] + bbox[3] + 20),
|
||||
(0, 255, 0), 2)
|
||||
|
||||
return self.lmList, bbox_info
|
||||
|
||||
def revolve(self, img, draw=True):
|
||||
"""
|
||||
旋转手势识别点
|
||||
:param img: 要查找的主图像
|
||||
:param draw: 在图像上绘制输出的标志。(默认绘制矩形框)
|
||||
:return: 像素格式的手部关节位置列表
|
||||
"""
|
||||
# print(self.lmList)
|
||||
point_x = self.lmList[0][0]
|
||||
point_y = self.lmList[0][1]
|
||||
delta_x = self.lmList[13][0] - point_x
|
||||
delta_y = self.lmList[13][1] - point_y
|
||||
if delta_y == 0:
|
||||
if delta_x < 0:
|
||||
theta = math.pi / 2
|
||||
else:
|
||||
theta = -math.pi / 2
|
||||
else:
|
||||
theta = math.atan(delta_x / delta_y)
|
||||
if delta_y > 0:
|
||||
theta = theta + math.pi
|
||||
# print(theta*180/math.pi)
|
||||
for i in self.lmList:
|
||||
px, py = Rotate(theta, i[0], i[1], point_x, point_y)
|
||||
px = int(px)
|
||||
py = int(py)
|
||||
self.re_lmList.append([px, py])
|
||||
if draw:
|
||||
cv2.circle(img, (px, py), 5, (0, 0, 255), cv2.FILLED)
|
||||
return self.re_lmList
|
||||
|
||||
def fingers_up(self):
|
||||
"""
|
||||
查找列表中打开并返回的手指数。会分别考虑左手和右手
|
||||
:return: 竖起手指的列表
|
||||
"""
|
||||
fingers = []
|
||||
if self.results.multi_hand_landmarks:
|
||||
my_hand_type = self.hand_type()
|
||||
# Thumb
|
||||
if my_hand_type == "Right":
|
||||
if self.lmList[self.tipIds[0]][0] > self.lmList[self.tipIds[0] - 1][0]:
|
||||
fingers.append(1)
|
||||
else:
|
||||
fingers.append(0)
|
||||
else:
|
||||
if self.lmList[self.tipIds[0]][0] < self.lmList[self.tipIds[0] - 1][0]:
|
||||
fingers.append(1)
|
||||
else:
|
||||
fingers.append(0)
|
||||
# 4 Fingers
|
||||
for i in range(1, 5):
|
||||
if self.lmList[self.tipIds[i]][1] < self.lmList[self.tipIds[i] - 2][1]:
|
||||
fingers.append(1)
|
||||
else:
|
||||
fingers.append(0)
|
||||
return fingers
|
||||
|
||||
def re_fingers_up(self):
|
||||
"""
|
||||
查找列表中打开并返回的手指数。会分别考虑左手和右手
|
||||
:return: 竖起手指的列表
|
||||
"""
|
||||
fingers = []
|
||||
if self.results.multi_hand_landmarks:
|
||||
my_hand_type = self.hand_type()
|
||||
# Thumb
|
||||
if my_hand_type == "Right":
|
||||
if self.re_lmList[self.tipIds[0]][0] > self.re_lmList[self.tipIds[0] - 1][0]:
|
||||
fingers.append(1)
|
||||
else:
|
||||
fingers.append(0)
|
||||
else:
|
||||
if self.re_lmList[self.tipIds[0]][0] < self.re_lmList[self.tipIds[0] - 1][0]:
|
||||
fingers.append(1)
|
||||
else:
|
||||
fingers.append(0)
|
||||
# 4 Fingers
|
||||
for i in range(1, 5):
|
||||
if self.re_lmList[self.tipIds[i]][1] < self.re_lmList[self.tipIds[i] - 2][1]:
|
||||
fingers.append(1)
|
||||
else:
|
||||
fingers.append(0)
|
||||
return fingers
|
||||
|
||||
def knuckles_up(self):
|
||||
"""
|
||||
查找列表中打开并返回的手指数。会分别考虑左手和右手
|
||||
:return: 竖起手指的列表
|
||||
"""
|
||||
knuckles = []
|
||||
distan = 10
|
||||
if self.results.multi_hand_landmarks:
|
||||
my_hand_type = self.hand_type()
|
||||
# Thumb
|
||||
xx = self.re_lmList[self.tipIds[0]][0]
|
||||
yy = self.re_lmList[self.tipIds[0] - 1][0]
|
||||
if my_hand_type == "Right":
|
||||
if -distan < xx - yy < distan:
|
||||
knuckles.append(2)
|
||||
elif xx > yy:
|
||||
knuckles.append(1)
|
||||
else:
|
||||
knuckles.append(0)
|
||||
else:
|
||||
if -distan < xx - yy < distan:
|
||||
knuckles.append(2)
|
||||
elif xx < yy:
|
||||
knuckles.append(1)
|
||||
else:
|
||||
knuckles.append(0)
|
||||
# 12 knuckles
|
||||
for i in range(1, 5):
|
||||
for j in range(3):
|
||||
xx = self.re_lmList[self.tipIds[i]-j][1]
|
||||
yy = self.re_lmList[self.tipIds[i]-j - 1][1]
|
||||
if -distan < xx - yy < distan:
|
||||
knuckles.append(2)
|
||||
elif xx < yy:
|
||||
knuckles.append(1)
|
||||
else:
|
||||
knuckles.append(0)
|
||||
return knuckles
|
||||
|
||||
def hand_type(self):
|
||||
"""
|
||||
检查传入的手部是左还是右
|
||||
:return: "Right" 或 "Left"
|
||||
"""
|
||||
if self.results.multi_hand_landmarks:
|
||||
if self.lmList[17][0] < self.lmList[5][0]:
|
||||
return "Right"
|
||||
else:
|
||||
return "Left"
|
||||
|
||||
|
||||
class Main:
|
||||
def __init__(self):
|
||||
self.detector = None
|
||||
self.camera = cv2.VideoCapture(0, cv2.CAP_DSHOW)
|
||||
self.camera.set(3, 1280)
|
||||
self.camera.set(4, 720)
|
||||
|
||||
def gesture_recognition(self):
|
||||
self.detector = HandDetector()
|
||||
gesture_store = {}
|
||||
startTime = time.time()
|
||||
stored_round = 1
|
||||
stored_flag = 0
|
||||
xl = np.zeros((1, 13)) # 特征值存储
|
||||
while True:
|
||||
frame, img = self.camera.read()
|
||||
img = self.detector.find_hands(img)
|
||||
lm_list, bbox = self.detector.find_position(img)
|
||||
if lm_list:
|
||||
re_lm_list = self.detector.revolve(img)
|
||||
x_1, y_1 = bbox["bbox"][0], bbox["bbox"][1]
|
||||
knucks = self.detector.knuckles_up()
|
||||
# x1, x2, x3, x4, x5 = self.detector.re_fingers_up()
|
||||
#
|
||||
# if (x2 == 1 and x3 == 1) and (x4 == 0 and x5 == 0 and x1 == 0):
|
||||
# cv2.putText(img, "GOOD!", (x_1, y_1), cv2.FONT_HERSHEY_PLAIN, 3,
|
||||
# (0, 0, 255), 3)
|
||||
|
||||
print(time.time() - startTime)
|
||||
if (time.time() - startTime) < 3: # 手势存储时间
|
||||
xl = np.vstack((xl, knucks))
|
||||
cv2.putText(img, 'Please put the gesture to be stored in 1 second', (50, 50),
|
||||
cv2.FONT_HERSHEY_PLAIN, 1.2, (255, 255, 255), 2)
|
||||
else: # 开始手势识别
|
||||
self.detector.fingers = xl
|
||||
value = ''
|
||||
for j in range(13):
|
||||
value = value + str(np.argmax(
|
||||
np.bincount(xl[:, j].astype(int)))) # 找出第3列最频繁出现的值
|
||||
gesture_store[value] = stored_round
|
||||
stored_flag = 1
|
||||
# startTime = time.time()
|
||||
gesture_dete = ''.join(str(knuck) for knuck in knucks)
|
||||
if gesture_dete in gesture_store:
|
||||
cv2.putText(img, str(gesture_store[gesture_dete]), (x_1, y_1), cv2.FONT_HERSHEY_PLAIN, 3,
|
||||
(0, 0, 255), 3)
|
||||
cv2.putText(img, 'Gesture stored, recognition started', (50, 50),
|
||||
cv2.FONT_HERSHEY_PLAIN, 1.2, (255, 255, 255), 2)
|
||||
else:
|
||||
if stored_flag:
|
||||
stored_round += 1
|
||||
stored_flag = 0
|
||||
startTime = time.time() # 当检测不到手势时,初始化手势存储
|
||||
xl = np.zeros((1, 13)) # 特征值存储
|
||||
cv2.putText(img, 'Please put the gesture to be stored in 1 second', (50, 50), cv2.FONT_HERSHEY_PLAIN,
|
||||
1.2, (255, 255, 255), 2)
|
||||
|
||||
cv2.imshow("camera", img)
|
||||
key = cv2.waitKey(1)
|
||||
if cv2.getWindowProperty('camera', cv2.WND_PROP_VISIBLE) < 1:
|
||||
break
|
||||
elif key == 27:
|
||||
break
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
Solution = Main()
|
||||
Solution.gesture_recognition()
|
Loading…
x
Reference in New Issue
Block a user