Merge pull request #5 from leafliber/DM

Dm
This commit is contained in:
leaf 2022-06-30 21:16:16 +08:00 committed by GitHub
commit 2d1e26144d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

318
DM.py Normal file
View File

@ -0,0 +1,318 @@
# -*- coding:utf-8 -*-
"""
信号设计课程小组设计
@ by: Leaf
@ date: 2022-05-28
"""
import mediapipe as mp
import cv2
# import HandDetector
import math
from datetime import datetime
import time
import numpy as np
# 旋转函数
def Rotate(angle, x, y, point_x, point_y):
px = (x - point_x) * math.cos(angle) - (y - point_y) * math.sin(angle) + point_x
py = (x - point_x) * math.sin(angle) + (y - point_y) * math.cos(angle) + point_y
return px, py
class HandDetector:
"""
使用mediapipe库查找手导出地标像素格式添加了额外的功能
如查找方式许多手指向上或两个手指之间的距离而且提供找到的手的边界框信息
"""
def __init__(self, mode=False, max_hands=2, detection_con=0.5, min_track_con=0.5):
"""
:param mode: 在静态模式下对每个图像进行检测
:param max_hands: 要检测的最大手数
:param detection_con: 最小检测置信度
:param min_track_con: 最小跟踪置信度
"""
self.results = None
self.mode = mode
self.max_hands = max_hands
self.modelComplex = 1
self.detection_con = detection_con
self.min_track_con = min_track_con
# 初始化手部的识别模型
self.mpHands = mp.solutions.hands
self.hands = self.mpHands.Hands(static_image_mode=self.mode,
max_num_hands=self.max_hands,
min_detection_confidence=self.detection_con,
min_tracking_confidence=self.min_track_con)
self.mpDraw = mp.solutions.drawing_utils # 初始化绘图器
self.tipIds = [4, 8, 12, 16, 20] # 指尖列表
# self.knuckles = {'0': [4, 3, 2, 1], "1": [8, 7, 6, 5], "2": [12, 11, 10, 9], "3": [16, 15, 14, 13],
# "4": [20, 19, 18, 17]}
self.fingers = []
self.lmList = []
self.re_lmList = []
def find_hands(self, img, draw=True):
"""
从图像(BRG)中找到手部
:param img: 用于查找手的图像
:param draw: 在图像上绘制输出的标志
:return: 带或不带图形的图像
"""
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 将传入的图像由BGR模式转标准的Opencv模式——RGB模式
self.results = self.hands.process(img_rgb)
if self.results.multi_hand_landmarks:
for handLms in self.results.multi_hand_landmarks:
if draw:
self.mpDraw.draw_landmarks(img, handLms,
self.mpHands.HAND_CONNECTIONS)
return img
def find_position(self, img, hand_no=0, draw=True):
"""
查找单手的地标并将其放入列表中像素格式还可以返回手部的周围的边界框
:param img: 要查找的主图像
:param hand_no: 如果检测到多只手则为手部id
:param draw: 在图像上绘制输出的标志(默认绘制矩形框)
:return: 像素格式的手部关节位置列表手部边界框
"""
x_list = []
y_list = []
bbox_info = []
self.lmList = []
self.re_lmList = []
if self.results.multi_hand_landmarks:
my_hand = self.results.multi_hand_landmarks[hand_no]
for _, lm in enumerate(my_hand.landmark):
h, w, c = img.shape
px, py = int(lm.x * w), int(lm.y * h)
x_list.append(px)
y_list.append(py)
self.lmList.append([px, py])
if draw:
cv2.circle(img, (px, py), 5, (255, 0, 255), cv2.FILLED)
x_min, x_max = min(x_list), max(x_list)
y_min, y_max = min(y_list), max(y_list)
box_w, box_h = x_max - x_min, y_max - y_min
bbox = x_min, y_min, box_w, box_h
cx, cy = bbox[0] + (bbox[2] // 2), bbox[1] + (bbox[3] // 2)
bbox_info = {"id": hand_no, "bbox": bbox, "center": (cx, cy)}
if draw:
cv2.rectangle(img, (bbox[0] - 20, bbox[1] - 20),
(bbox[0] + bbox[2] + 20, bbox[1] + bbox[3] + 20),
(0, 255, 0), 2)
return self.lmList, bbox_info
def revolve(self, img, draw=True):
"""
旋转手势识别点
:param img: 要查找的主图像
:param draw: 在图像上绘制输出的标志(默认绘制矩形框)
:return: 像素格式的手部关节位置列表
"""
# print(self.lmList)
point_x = self.lmList[0][0]
point_y = self.lmList[0][1]
delta_x = self.lmList[13][0] - point_x
delta_y = self.lmList[13][1] - point_y
if delta_y == 0:
if delta_x < 0:
theta = math.pi / 2
else:
theta = -math.pi / 2
else:
theta = math.atan(delta_x / delta_y)
if delta_y > 0:
theta = theta + math.pi
# print(theta*180/math.pi)
for i in self.lmList:
px, py = Rotate(theta, i[0], i[1], point_x, point_y)
px = int(px)
py = int(py)
self.re_lmList.append([px, py])
if draw:
cv2.circle(img, (px, py), 5, (0, 0, 255), cv2.FILLED)
return self.re_lmList
def fingers_up(self):
"""
查找列表中打开并返回的手指数会分别考虑左手和右手
:return: 竖起手指的列表
"""
fingers = []
if self.results.multi_hand_landmarks:
my_hand_type = self.hand_type()
# Thumb
if my_hand_type == "Right":
if self.lmList[self.tipIds[0]][0] > self.lmList[self.tipIds[0] - 1][0]:
fingers.append(1)
else:
fingers.append(0)
else:
if self.lmList[self.tipIds[0]][0] < self.lmList[self.tipIds[0] - 1][0]:
fingers.append(1)
else:
fingers.append(0)
# 4 Fingers
for i in range(1, 5):
if self.lmList[self.tipIds[i]][1] < self.lmList[self.tipIds[i] - 2][1]:
fingers.append(1)
else:
fingers.append(0)
return fingers
def re_fingers_up(self):
"""
查找列表中打开并返回的手指数会分别考虑左手和右手
:return: 竖起手指的列表
"""
fingers = []
if self.results.multi_hand_landmarks:
my_hand_type = self.hand_type()
# Thumb
if my_hand_type == "Right":
if self.re_lmList[self.tipIds[0]][0] > self.re_lmList[self.tipIds[0] - 1][0]:
fingers.append(1)
else:
fingers.append(0)
else:
if self.re_lmList[self.tipIds[0]][0] < self.re_lmList[self.tipIds[0] - 1][0]:
fingers.append(1)
else:
fingers.append(0)
# 4 Fingers
for i in range(1, 5):
if self.re_lmList[self.tipIds[i]][1] < self.re_lmList[self.tipIds[i] - 2][1]:
fingers.append(1)
else:
fingers.append(0)
return fingers
def knuckles_up(self):
"""
查找列表中打开并返回的手指数会分别考虑左手和右手
:return: 竖起手指的列表
"""
knuckles = []
distan = 10
if self.results.multi_hand_landmarks:
my_hand_type = self.hand_type()
# Thumb
xx = self.re_lmList[self.tipIds[0]][0]
yy = self.re_lmList[self.tipIds[0] - 1][0]
if my_hand_type == "Right":
if -distan < xx - yy < distan:
knuckles.append(2)
elif xx > yy:
knuckles.append(1)
else:
knuckles.append(0)
else:
if -distan < xx - yy < distan:
knuckles.append(2)
elif xx < yy:
knuckles.append(1)
else:
knuckles.append(0)
# 12 knuckles
for i in range(1, 5):
for j in range(3):
xx = self.re_lmList[self.tipIds[i]-j][1]
yy = self.re_lmList[self.tipIds[i]-j - 1][1]
if -distan < xx - yy < distan:
knuckles.append(2)
elif xx < yy:
knuckles.append(1)
else:
knuckles.append(0)
return knuckles
def hand_type(self):
"""
检查传入的手部是左还是右
:return: "Right" "Left"
"""
if self.results.multi_hand_landmarks:
if self.lmList[17][0] < self.lmList[5][0]:
return "Right"
else:
return "Left"
class Main:
def __init__(self):
self.detector = None
self.camera = cv2.VideoCapture(0, cv2.CAP_DSHOW)
self.camera.set(3, 1280)
self.camera.set(4, 720)
def gesture_recognition(self):
self.detector = HandDetector()
gesture_store = {}
startTime = time.time()
stored_round = 1
stored_flag = 0
xl = np.zeros((1, 13)) # 特征值存储
while True:
frame, img = self.camera.read()
img = self.detector.find_hands(img)
lm_list, bbox = self.detector.find_position(img)
if lm_list:
re_lm_list = self.detector.revolve(img)
x_1, y_1 = bbox["bbox"][0], bbox["bbox"][1]
knucks = self.detector.knuckles_up()
# x1, x2, x3, x4, x5 = self.detector.re_fingers_up()
#
# if (x2 == 1 and x3 == 1) and (x4 == 0 and x5 == 0 and x1 == 0):
# cv2.putText(img, "GOOD!", (x_1, y_1), cv2.FONT_HERSHEY_PLAIN, 3,
# (0, 0, 255), 3)
print(time.time() - startTime)
if (time.time() - startTime) < 3: # 手势存储时间
xl = np.vstack((xl, knucks))
cv2.putText(img, 'Please put the gesture to be stored in 1 second', (50, 50),
cv2.FONT_HERSHEY_PLAIN, 1.2, (255, 255, 255), 2)
else: # 开始手势识别
self.detector.fingers = xl
value = ''
for j in range(13):
value = value + str(np.argmax(
np.bincount(xl[:, j].astype(int)))) # 找出第3列最频繁出现的值
gesture_store[value] = stored_round
stored_flag = 1
# startTime = time.time()
gesture_dete = ''.join(str(knuck) for knuck in knucks)
if gesture_dete in gesture_store:
cv2.putText(img, str(gesture_store[gesture_dete]), (x_1, y_1), cv2.FONT_HERSHEY_PLAIN, 3,
(0, 0, 255), 3)
cv2.putText(img, 'Gesture stored, recognition started', (50, 50),
cv2.FONT_HERSHEY_PLAIN, 1.2, (255, 255, 255), 2)
else:
if stored_flag:
stored_round += 1
stored_flag = 0
startTime = time.time() # 当检测不到手势时,初始化手势存储
xl = np.zeros((1, 13)) # 特征值存储
cv2.putText(img, 'Please put the gesture to be stored in 1 second', (50, 50), cv2.FONT_HERSHEY_PLAIN,
1.2, (255, 255, 255), 2)
cv2.imshow("camera", img)
key = cv2.waitKey(1)
if cv2.getWindowProperty('camera', cv2.WND_PROP_VISIBLE) < 1:
break
elif key == 27:
break
if __name__ == '__main__':
Solution = Main()
Solution.gesture_recognition()