diff --git a/datatest.py b/datatest.py new file mode 100644 index 0000000..3e5328e --- /dev/null +++ b/datatest.py @@ -0,0 +1,174 @@ +import cv2 +import mediapipe as mp +import numpy as np + + +class HandDetector: + """ + 使用mediapipe库查找手。导出地标像素格式。添加了额外的功能。 + 如查找方式,许多手指向上或两个手指之间的距离。而且提供找到的手的边界框信息。 + """ + + def __init__(self, mode=False, max_hands=2, detection_con=0.5, min_track_con=0.5): + """ + :param mode: 在静态模式下,对每个图像进行检测 + :param max_hands: 要检测的最大手数 + :param detection_con: 最小检测置信度 + :param min_track_con: 最小跟踪置信度 + """ + self.results = None + self.mode = mode + self.max_hands = max_hands + self.modelComplex = False + self.detection_con = detection_con + self.min_track_con = min_track_con + + # 初始化手部的识别模型 + self.mpHands = mp.solutions.hands + self.hands = self.mpHands.Hands(self.mode, self.max_hands, self.detection_con, self.min_track_con) + self.mpDraw = mp.solutions.drawing_utils # 初始化绘图器 + self.tipIds = [4, 8, 12, 16, 20] # 指尖列表 + self.fingers = [] + self.lmList = [] + + def find_hands(self, img, draw=True): + """ + 从图像(BRG)中找到手部。 + :param img: 用于查找手的图像。 + :param draw: 在图像上绘制输出的标志。 + :return: 带或不带图形的图像 + """ + img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 将传入的图像由BGR模式转标准的Opencv模式——RGB模式, + self.results = self.hands.process(img_rgb) + + if self.results.multi_hand_landmarks: + for handLms in self.results.multi_hand_landmarks: + if draw: + self.mpDraw.draw_landmarks(img, handLms, + self.mpHands.HAND_CONNECTIONS) + return img + + def find_position(self, img, hand_no=0, draw=True): + """ + 查找单手的地标并将其放入列表中像素格式。还可以返回手部的周围的边界框。 + :param img: 要查找的主图像 + :param hand_no: 如果检测到多只手,则为手部id + :param draw: 在图像上绘制输出的标志。(默认绘制矩形框) + :return: 像素格式的手部关节位置列表;手部边界框 + """ + + x_list = [] + y_list = [] + onedata = np.zeros([21,3]) + zerodata = np.zeros([21,3]) + h, w, c = img.shape + self.lmList = [] + + if self.results.multi_hand_landmarks: + my_hand = self.results.multi_hand_landmarks[hand_no] + for i, lm in enumerate(my_hand.landmark): + onedata[i] = np.array([lm.x,lm.y,lm.z]) #将三维坐标添加到单次截屏的数据中 + + px, py= int(lm.x * w), int(lm.y * h) + x_list.append(px) + y_list.append(py) + self.lmList.append([px, py]) + if draw: + cv2.circle(img, (px, py), 5, (255, 0, 255), cv2.FILLED) + + return onedata, (h, w) + + def fingers_up(self): + """ + 查找列表中打开并返回的手指数。会分别考虑左手和右手 + :return: 竖起手指的列表 + """ + fingers = [] + if self.results.multi_hand_landmarks: + my_hand_type = self.hand_type() + # Thumb + if my_hand_type == "Right": + if self.lmList[self.tipIds[0]][0] > self.lmList[self.tipIds[0] - 1][0]: + fingers.append(1) + else: + fingers.append(0) + else: + if self.lmList[self.tipIds[0]][0] < self.lmList[self.tipIds[0] - 1][0]: + fingers.append(1) + else: + fingers.append(0) + # 4 Fingers + for i in range(1, 5): + if self.lmList[self.tipIds[i]][1] < self.lmList[self.tipIds[i] - 2][1]: + fingers.append(1) + else: + fingers.append(0) + return fingers + + def hand_type(self): + """ + 检查传入的手部是左还是右 + :return: "Right" 或 "Left" + """ + if self.results.multi_hand_landmarks: + if self.lmList[17][0] < self.lmList[5][0]: + return 1 + else: + return 0 + + +class Main: + def __init__(self, label, N = 100): + self.detector = None + self.camera = cv2.VideoCapture(0, cv2.CAP_DSHOW) + self.camera.set(3, 1280) + self.camera.set(4, 720) + self.N = N + #初始化数据包 + self.label = label + self.data = np.zeros([N,21,3]) + self.shape = np.zeros([N,2], dtype = np.int16) + self.handtype = np.zeros(N, dtype = np.int8) + + def gesture_recognition(self): + self.detector = HandDetector() + #初始化数据 + + zerodata = np.zeros([21,3]) + rezult = np.zeros([21,3]) + count = 0 + + while True: + frame, img = self.camera.read() + img = self.detector.find_hands(img) + + rezult,shape = self.detector.find_position(img) + if rezult.all() != zerodata.all(): #假设矩阵不为0,即捕捉到手部时 + self.data[count] = rezult + self.handtype[count] = self.detector.hand_type() + self.shape[count] = np.array(shape) + count += 1 + + cv2.imshow("camera", img) + key = cv2.waitKey(1) + if cv2.getWindowProperty('camera', cv2.WND_PROP_VISIBLE) < 1: + break + elif key == 27: + break + elif count == self.N - 1: + break + + np.savez('firstdata', label = self.label, data = self.data, + handtype = self.handtype, shape = self.shape) + + +if __name__ == '__main__': + Solution = Main(label = "five") + Solution.gesture_recognition() + npzfile = np.load('firstdata.npz') + + #print(npzfile['data'][0]) + #print(" ") + #print(npzfile['handtype']) + #print(npzfile['label']) + #print(npzfile['shape'])