加了图像识别和视频识别

This commit is contained in:
Liar 2022-06-30 20:45:23 +08:00
parent 67b9d8c91c
commit 9698cd8fa2

View File

@ -32,7 +32,7 @@ def rotate(angle, x, y, point_x, point_y):
def normalize(x):
max_x = np.max(x)
min_x = np.min(x)
return (x-min_x)/(max_x-min_x)
return (x - min_x) / (max_x - min_x)
class CNN(nn.Module):
@ -56,7 +56,7 @@ class CNN(nn.Module):
nn.MaxPool2d(2),
)
self.med = nn.Linear(32 * 11 * 2, 500)
self.med2 = nn.Linear(1*21*3, 100)
self.med2 = nn.Linear(1 * 21 * 3, 100)
self.med3 = nn.Linear(100, 500)
self.out = nn.Linear(500, m) # fully connected layer, output 10 classes
@ -264,10 +264,10 @@ class AI:
print(
"\r[Epoch: %d] [%d/%d (%0.f %%)][Loss: %f]"
% (
epoch+1,
(step+1) * len(data),
epoch + 1,
(step + 1) * len(data),
len(self.train_loader.dataset),
100. * (step+1) / len(self.train_loader),
100. * (step + 1) / len(self.train_loader),
loss.item()
), end="")
@ -290,7 +290,7 @@ class Main:
tk.Label(self.top1, text='Label:').place(x=27, y=10)
self.entry = tk.Entry(self.top1, width=15)
self.entry.place(x=80, y=10)
tk.Button(self.top1, text='确定', command=self.change_state).place(x=235,y=5)
tk.Button(self.top1, text='确定', command=self.change_state).place(x=235, y=5)
def change_state(self):
self.label = self.entry.get() # 调用get()方法将Entry中的内容获取出来
@ -357,7 +357,7 @@ class Main:
ai.load_datasets()
ai.train_cnn()
def gesture_recognition(self):
def gesture_recognition_camera(self):
if self.camera is None:
self.camera = cv2.VideoCapture(0, cv2.CAP_DSHOW)
self.camera.set(3, 1280)
@ -394,10 +394,83 @@ class Main:
elif key == 27:
break
def gesture_recognition_video(self, filedir):
self.detector = HandDetector()
cnn = torch.load("CNN.pkl")
out_label = cnn.out_label
result = []
disp = ""
cap = cv2.VideoCapture(filedir)
while True:
ret, img = cap.read()
img = self.detector.find_hands(img)
lm_list, bbox = self.detector.find_position(img)
if lm_list.any():
x_1, y_1 = bbox["bbox"][0], bbox["bbox"][1]
data = torch.Tensor(lm_list)
data = data.unsqueeze(0)
data = data.unsqueeze(0)
test_output = cnn(data)
result.append(torch.max(test_output, 1)[1].data.cpu().numpy()[0])
if len(result) > 5:
disp = str(out_label[stats.mode(result)[0][0]])
result = []
cv2.putText(img, disp, (x_1, y_1), cv2.FONT_HERSHEY_PLAIN, 3,
(0, 0, 255), 3)
cv2.imshow("camera", img)
key = cv2.waitKey(1)
if cv2.getWindowProperty('camera', cv2.WND_PROP_VISIBLE) < 1:
break
elif key == 27:
break
cap.release()
def gesture_recognition_img(self, filedir):
self.detector = HandDetector()
cnn = torch.load("CNN.pkl")
out_label = cnn.out_label
result = []
disp = ""
img = cv2.imread(filedir)
img = self.detector.find_hands(img)
while True:
lm_list, bbox = self.detector.find_position(img)
if lm_list.any():
x_1, y_1 = bbox["bbox"][0], bbox["bbox"][1]
data = torch.Tensor(lm_list)
data = data.unsqueeze(0)
data = data.unsqueeze(0)
test_output = cnn(data)
result.append(torch.max(test_output, 1)[1].data.cpu().numpy()[0])
if len(result) > 5:
disp = str(out_label[stats.mode(result)[0][0]])
result = []
cv2.putText(img, disp, (x_1, y_1), cv2.FONT_HERSHEY_PLAIN, 3,
(0, 0, 255), 3)
cv2.imshow("camera", img)
key = cv2.waitKey(1)
if cv2.getWindowProperty('camera', cv2.WND_PROP_VISIBLE) < 1:
break
elif key == 27:
break
if __name__ == '__main__':
solution = Main()
my_datasets_dir = "test"
solution.make_datasets(my_datasets_dir, 100)
solution.train(my_datasets_dir)
solution.gesture_recognition()
# solution.make_datasets(my_datasets_dir, 100)
# solution.train(my_datasets_dir)
dir_video = "C:/Users/Liar/Pictures/Camera Roll/WIN_20220630_20_11_47_Pro.mp4"
dir_img = "C:/Users/Liar/Pictures/Camera Roll/WIN_20220630_20_01_22_Pro.jpg"
solution.gesture_recognition_camera()
# solution.gesture_recognition_video(dir_video)
# solution.gesture_recognition_img(dir_img)