import cv2 import mediapipe as mp import numpy as np class HandDetector: """ 使用mediapipe库查找手。导出地标像素格式。添加了额外的功能。 如查找方式,许多手指向上或两个手指之间的距离。而且提供找到的手的边界框信息。 """ def __init__(self, mode=False, max_hands=2, detection_con=0.5, min_track_con=0.5): """ :param mode: 在静态模式下,对每个图像进行检测 :param max_hands: 要检测的最大手数 :param detection_con: 最小检测置信度 :param min_track_con: 最小跟踪置信度 """ self.results = None self.mode = mode self.max_hands = max_hands self.modelComplex = False self.detection_con = detection_con self.min_track_con = min_track_con # 初始化手部的识别模型 self.mpHands = mp.solutions.hands self.hands = self.mpHands.Hands(self.mode, self.max_hands, self.detection_con, self.min_track_con) self.mpDraw = mp.solutions.drawing_utils # 初始化绘图器 self.tipIds = [4, 8, 12, 16, 20] # 指尖列表 self.fingers = [] self.lmList = [] def find_hands(self, img, draw=True): """ 从图像(BRG)中找到手部。 :param img: 用于查找手的图像。 :param draw: 在图像上绘制输出的标志。 :return: 带或不带图形的图像 """ img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 将传入的图像由BGR模式转标准的Opencv模式——RGB模式, self.results = self.hands.process(img_rgb) if self.results.multi_hand_landmarks: for handLms in self.results.multi_hand_landmarks: if draw: self.mpDraw.draw_landmarks(img, handLms, self.mpHands.HAND_CONNECTIONS) return img def find_position(self, img, hand_no=0, draw=True): """ 查找单手的地标并将其放入列表中像素格式。还可以返回手部的周围的边界框。 :param img: 要查找的主图像 :param hand_no: 如果检测到多只手,则为手部id :param draw: 在图像上绘制输出的标志。(默认绘制矩形框) :return: 像素格式的手部关节位置列表;手部边界框 """ x_list = [] y_list = [] onedata = np.zeros([21,3]) zerodata = np.zeros([21,3]) h, w, c = img.shape self.lmList = [] if self.results.multi_hand_landmarks: my_hand = self.results.multi_hand_landmarks[hand_no] for i, lm in enumerate(my_hand.landmark): onedata[i] = np.array([lm.x,lm.y,lm.z]) #将三维坐标添加到单次截屏的数据中 px, py= int(lm.x * w), int(lm.y * h) x_list.append(px) y_list.append(py) self.lmList.append([px, py]) if draw: cv2.circle(img, (px, py), 5, (255, 0, 255), cv2.FILLED) return onedata, (h, w) def fingers_up(self): """ 查找列表中打开并返回的手指数。会分别考虑左手和右手 :return: 竖起手指的列表 """ fingers = [] if self.results.multi_hand_landmarks: my_hand_type = self.hand_type() # Thumb if my_hand_type == "Right": if self.lmList[self.tipIds[0]][0] > self.lmList[self.tipIds[0] - 1][0]: fingers.append(1) else: fingers.append(0) else: if self.lmList[self.tipIds[0]][0] < self.lmList[self.tipIds[0] - 1][0]: fingers.append(1) else: fingers.append(0) # 4 Fingers for i in range(1, 5): if self.lmList[self.tipIds[i]][1] < self.lmList[self.tipIds[i] - 2][1]: fingers.append(1) else: fingers.append(0) return fingers def hand_type(self): """ 检查传入的手部是左还是右 :return: "Right" 或 "Left" """ if self.results.multi_hand_landmarks: if self.lmList[17][0] < self.lmList[5][0]: return 1 else: return 0 class Main: def __init__(self, label, N = 100): self.detector = None self.camera = cv2.VideoCapture(0, cv2.CAP_DSHOW) self.camera.set(3, 1280) self.camera.set(4, 720) self.N = N #初始化数据包 self.label = label self.data = np.zeros([N,21,3]) self.shape = np.zeros([N,2], dtype = np.int16) self.handtype = np.zeros(N, dtype = np.int8) def gesture_recognition(self): self.detector = HandDetector() #初始化数据 zerodata = np.zeros([21,3]) rezult = np.zeros([21,3]) count = 0 while True: frame, img = self.camera.read() img = self.detector.find_hands(img) rezult,shape = self.detector.find_position(img) if rezult.all() != zerodata.all(): #假设矩阵不为0,即捕捉到手部时 self.data[count] = rezult self.handtype[count] = self.detector.hand_type() self.shape[count] = np.array(shape) count += 1 cv2.imshow("camera", img) key = cv2.waitKey(1) if cv2.getWindowProperty('camera', cv2.WND_PROP_VISIBLE) < 1: break elif key == 27: break elif count == self.N - 1: break np.savez('firstdata', label = self.label, data = self.data, handtype = self.handtype, shape = self.shape) if __name__ == '__main__': Solution = Main(label = "five") Solution.gesture_recognition() npzfile = np.load('firstdata.npz') #print(npzfile['data'][0]) #print(" ") #print(npzfile['handtype']) #print(npzfile['label']) #print(npzfile['shape'])