272 lines
9.9 KiB
Python
272 lines
9.9 KiB
Python
# -*- coding:utf-8 -*-
|
||
|
||
"""
|
||
信号设计课程小组设计
|
||
|
||
@ by: Leaf
|
||
@ date: 2022-05-28
|
||
"""
|
||
|
||
import cv2
|
||
import mediapipe as mp
|
||
import torch
|
||
import torch.nn as nn
|
||
import numpy as np
|
||
from pathlib import Path
|
||
from torch.utils.data import DataLoader, TensorDataset
|
||
|
||
|
||
class CNN(nn.Module):
|
||
def __init__(self):
|
||
super(CNN, self).__init__()
|
||
self.out_label = []
|
||
self.conv1 = nn.Sequential(
|
||
nn.Conv2d(
|
||
in_channels=1,
|
||
out_channels=16,
|
||
kernel_size=5,
|
||
stride=1,
|
||
padding=2,
|
||
),
|
||
nn.ReLU(),
|
||
nn.MaxPool2d(kernel_size=1),
|
||
)
|
||
self.conv2 = nn.Sequential(
|
||
nn.Conv2d(16, 32, 5, 1, 2),
|
||
nn.ReLU(),
|
||
nn.MaxPool2d(3),
|
||
)
|
||
self.med = nn.Linear(32 * 7 * 1, 500)
|
||
self.out = nn.Linear(500, 10) # fully connected layer, output 10 classes
|
||
|
||
def forward(self, x):
|
||
x = self.conv1(x)
|
||
x = self.conv2(x)
|
||
x = x.view(x.size(0), -1) # 展平多维的卷积图成 (batch_size, 32 * 7 * 7)
|
||
x = self.med(x)
|
||
output = self.out(x)
|
||
return output
|
||
|
||
|
||
class HandDetector:
|
||
"""
|
||
使用mediapipe库查找手。导出地标像素格式。添加了额外的功能。
|
||
如查找方式,许多手指向上或两个手指之间的距离。而且提供找到的手的边界框信息。
|
||
"""
|
||
|
||
def __init__(self, mode=False, max_hands=2, detection_con=0.5, min_track_con=0.5):
|
||
"""
|
||
:param mode: 在静态模式下,对每个图像进行检测
|
||
:param max_hands: 要检测的最大手数
|
||
:param detection_con: 最小检测置信度
|
||
:param min_track_con: 最小跟踪置信度
|
||
"""
|
||
self.results = None
|
||
self.mode = mode
|
||
self.max_hands = max_hands
|
||
self.modelComplex = 1
|
||
self.detection_con = detection_con
|
||
self.min_track_con = min_track_con
|
||
|
||
# 初始化手部的识别模型
|
||
self.mpHands = mp.solutions.hands
|
||
self.hands = self.mpHands.Hands(static_image_mode=self.mode,
|
||
max_num_hands=self.max_hands,
|
||
min_detection_confidence=self.detection_con,
|
||
min_tracking_confidence=self.min_track_con)
|
||
self.mpDraw = mp.solutions.drawing_utils # 初始化绘图器
|
||
self.tipIds = [4, 8, 12, 16, 20] # 指尖列表
|
||
self.fingers = []
|
||
self.lmList = []
|
||
|
||
def find_hands(self, img, draw=True):
|
||
"""
|
||
从图像(BRG)中找到手部。
|
||
:param img: 用于查找手的图像。
|
||
:param draw: 在图像上绘制输出的标志。
|
||
:return: 带或不带图形的图像
|
||
"""
|
||
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 将传入的图像由BGR模式转标准的Opencv模式——RGB模式,
|
||
self.results = self.hands.process(img_rgb)
|
||
|
||
if self.results.multi_hand_landmarks:
|
||
for handLms in self.results.multi_hand_landmarks:
|
||
if draw:
|
||
self.mpDraw.draw_landmarks(img, handLms,
|
||
self.mpHands.HAND_CONNECTIONS)
|
||
return img
|
||
|
||
def find_position(self, img, hand_no=0, draw=True):
|
||
"""
|
||
查找单手的地标并将其放入列表中像素格式。还可以返回手部的周围的边界框。
|
||
:param img: 要查找的主图像
|
||
:param hand_no: 如果检测到多只手,则为手部id
|
||
:param draw: 在图像上绘制输出的标志。(默认绘制矩形框)
|
||
:return: 像素格式的手部关节位置列表;手部边界框
|
||
"""
|
||
|
||
x_list = []
|
||
y_list = []
|
||
bbox_info = []
|
||
self.lmList = []
|
||
h, w, c = img.shape
|
||
if self.results.multi_hand_landmarks:
|
||
my_hand = self.results.multi_hand_landmarks[hand_no]
|
||
for _, lm in enumerate(my_hand.landmark):
|
||
px, py = int(lm.x * w), int(lm.y * h)
|
||
x_list.append(px)
|
||
y_list.append(py)
|
||
self.lmList.append([lm.x, lm.y, lm.z])
|
||
if draw:
|
||
cv2.circle(img, (px, py), 5, (255, 0, 255), cv2.FILLED)
|
||
x_min, x_max = min(x_list), max(x_list)
|
||
y_min, y_max = min(y_list), max(y_list)
|
||
box_w, box_h = x_max - x_min, y_max - y_min
|
||
bbox = x_min, y_min, box_w, box_h
|
||
cx, cy = bbox[0] + (bbox[2] // 2), bbox[1] + (bbox[3] // 2)
|
||
bbox_info = {"id": hand_no, "bbox": bbox, "center": (cx, cy)}
|
||
|
||
if draw:
|
||
cv2.rectangle(img, (bbox[0] - 20, bbox[1] - 20),
|
||
(bbox[0] + bbox[2] + 20, bbox[1] + bbox[3] + 20),
|
||
(0, 255, 0), 2)
|
||
|
||
return self.lmList, bbox_info
|
||
|
||
def fingers_up(self):
|
||
"""
|
||
查找列表中打开并返回的手指数。会分别考虑左手和右手
|
||
:return: 竖起手指的列表
|
||
"""
|
||
fingers = []
|
||
if self.results.multi_hand_landmarks:
|
||
my_hand_type = self.hand_type()
|
||
# Thumb
|
||
if my_hand_type == "Right":
|
||
if self.lmList[self.tipIds[0]][0] > self.lmList[self.tipIds[0] - 1][0]:
|
||
fingers.append(1)
|
||
else:
|
||
fingers.append(0)
|
||
else:
|
||
if self.lmList[self.tipIds[0]][0] < self.lmList[self.tipIds[0] - 1][0]:
|
||
fingers.append(1)
|
||
else:
|
||
fingers.append(0)
|
||
# 4 Fingers
|
||
for i in range(1, 5):
|
||
if self.lmList[self.tipIds[i]][1] < self.lmList[self.tipIds[i] - 2][1]:
|
||
fingers.append(1)
|
||
else:
|
||
fingers.append(0)
|
||
return fingers
|
||
|
||
def hand_type(self):
|
||
"""
|
||
检查传入的手部是左还是右
|
||
:return: "Right" 或 "Left"
|
||
"""
|
||
if self.results.multi_hand_landmarks:
|
||
if self.lmList[17][0] < self.lmList[5][0]:
|
||
return "Right"
|
||
else:
|
||
return "Left"
|
||
|
||
|
||
class Main:
|
||
def __init__(self):
|
||
self.EPOCH = 50
|
||
self.BATCH_SIZE = 5
|
||
self.LR = 10e-5
|
||
self.DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||
|
||
self.camera = cv2.VideoCapture(0, cv2.CAP_DSHOW)
|
||
self.camera.set(3, 1280)
|
||
self.camera.set(4, 720)
|
||
|
||
self.datasets_dir = "Datasets"
|
||
self.train_loader = None
|
||
self.out_label = [] # CNN网络输出后数字标签转和字符串标签的映射关系
|
||
|
||
self.detector = None
|
||
|
||
def load_datasets(self):
|
||
train_data = []
|
||
train_label = []
|
||
|
||
for file in Path(self.datasets_dir).rglob("*.npz"):
|
||
data = np.load(str(file))
|
||
train_data.append(data["data"])
|
||
label_number = np.ones(len(data["data"]))*len(self.out_label)
|
||
train_label.append(label_number)
|
||
self.out_label.append(data["label"])
|
||
train_data = torch.Tensor(np.concatenate(train_data, axis=0))
|
||
train_data = train_data.unsqueeze(1)
|
||
train_label = torch.tensor(np.concatenate(train_label, axis=0)).long()
|
||
|
||
dataset = TensorDataset(train_data, train_label)
|
||
self.train_loader = DataLoader(dataset, batch_size=self.BATCH_SIZE, shuffle=True)
|
||
|
||
def train_cnn(self):
|
||
cnn = CNN().to(self.DEVICE)
|
||
optimizer = torch.optim.Adam(cnn.parameters(), self.LR) # optimize all cnn parameters
|
||
loss_func = nn.CrossEntropyLoss() # the target label is not one-hotted
|
||
|
||
for epoch in range(self.EPOCH):
|
||
for step, (data, target) in enumerate(self.train_loader):
|
||
# 分配 batch data, normalize x when iterate train_loader
|
||
data, target = data.to(self.DEVICE), target.to(self.DEVICE)
|
||
output = cnn(data) # cnn output
|
||
loss = loss_func(output, target) # cross entropy loss
|
||
optimizer.zero_grad() # clear gradients for this training step
|
||
loss.backward() # backpropagation, compute gradients
|
||
optimizer.step() # apply gradients
|
||
if (step + 1) % 100 == 0: # 输出结果
|
||
if (step + 1) % 100 == 0: # 输出结果
|
||
print(
|
||
"\r[Epoch: %d] [%d/%d (%0.f %%)][Loss: %f]"
|
||
% (
|
||
epoch,
|
||
step * len(data),
|
||
len(self.train_loader.dataset),
|
||
100. * step / len(self.train_loader),
|
||
loss.item()
|
||
), end="")
|
||
|
||
cnn.out_label = self.out_label
|
||
torch.save(cnn, 'CNN.pkl')
|
||
print("训练结束")
|
||
|
||
def gesture_recognition(self):
|
||
self.detector = HandDetector()
|
||
cnn = torch.load("CNN.pkl")
|
||
out_label = cnn.out_label
|
||
while True:
|
||
frame, img = self.camera.read()
|
||
img = self.detector.find_hands(img)
|
||
lm_list, bbox = self.detector.find_position(img)
|
||
|
||
if lm_list:
|
||
x_1, y_1 = bbox["bbox"][0], bbox["bbox"][1]
|
||
data = torch.Tensor(lm_list)
|
||
data = data.unsqueeze(0)
|
||
data = data.unsqueeze(0)
|
||
|
||
test_output = cnn(data)
|
||
result = torch.max(test_output, 1)[1].data.cpu().numpy()[0]
|
||
cv2.putText(img, str(out_label[result]), (x_1, y_1), cv2.FONT_HERSHEY_PLAIN, 3,
|
||
(0, 0, 255), 3)
|
||
|
||
cv2.imshow("camera", img)
|
||
key = cv2.waitKey(1)
|
||
if cv2.getWindowProperty('camera', cv2.WND_PROP_VISIBLE) < 1:
|
||
break
|
||
elif key == 27:
|
||
break
|
||
|
||
|
||
if __name__ == '__main__':
|
||
Solution = Main()
|
||
Solution.load_datasets()
|
||
Solution.train_cnn()
|
||
Solution.gesture_recognition()
|