import torchvision.transforms as transforms import pcl.loader normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) def moco_v2(): return [ transforms.RandomResizedCrop(224, scale=(0.2, 1.)), transforms.RandomApply([ transforms.ColorJitter(0.4, 0.4, 0.4, 0.1) # not strengthened ], p=0.8), transforms.RandomGrayscale(p=0.2), transforms.RandomApply([pcl.loader.GaussianBlur([.1, 2.])], p=0.5), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ] def moco_v1(): return [ transforms.RandomResizedCrop(224, scale=(0.2, 1.)), transforms.RandomGrayscale(p=0.2), transforms.ColorJitter(0.4, 0.4, 0.4, 0.4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ] def moco_eval(): return transforms.Compose([ transforms.Resize([512, 512]), # transforms.CenterCrop(512), transforms.ToTensor(), normalize ])