You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
39 lines
1.1 KiB
39 lines
1.1 KiB
import torchvision.transforms as transforms
|
|
import pcl.loader
|
|
|
|
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
|
std=[0.229, 0.224, 0.225])
|
|
|
|
|
|
def moco_v2():
|
|
return [
|
|
transforms.RandomResizedCrop(224, scale=(0.2, 1.)),
|
|
transforms.RandomApply([
|
|
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1) # not strengthened
|
|
], p=0.8),
|
|
transforms.RandomGrayscale(p=0.2),
|
|
transforms.RandomApply([pcl.loader.GaussianBlur([.1, 2.])], p=0.5),
|
|
transforms.RandomHorizontalFlip(),
|
|
transforms.ToTensor(),
|
|
normalize
|
|
]
|
|
|
|
|
|
def moco_v1():
|
|
return [
|
|
transforms.RandomResizedCrop(224, scale=(0.2, 1.)),
|
|
transforms.RandomGrayscale(p=0.2),
|
|
transforms.ColorJitter(0.4, 0.4, 0.4, 0.4),
|
|
transforms.RandomHorizontalFlip(),
|
|
transforms.ToTensor(),
|
|
normalize
|
|
]
|
|
|
|
|
|
def moco_eval():
|
|
return transforms.Compose([
|
|
transforms.Resize([512, 512]),
|
|
# transforms.CenterCrop(512),
|
|
transforms.ToTensor(),
|
|
normalize
|
|
])
|
|
|